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Abstract 

Perfect drain for the Maxwell Fish Eye (MFE) is a non-
magnetic dissipative region placed in the focal point to 
absorb all the incident radiation without reflection or 
scattering. The perfect drain was recently designed as a 
material with complex permittivity  that depends on 
frequency. However, this material is only a theoretical 
material, so it can not be used in practical devices. Recently, 
the perfect drain has been claimed as necessary to achieve 
super-resolution [Leonhard 2009, New J. Phys. 11 093040], 
which has increased the interest for practical perfect drains 
suitable for manufacturing. Here, we analyze the super-
resolution properties of a device equivalent to the MFE, 
known as Spherical Geodesic Waveguide (SGW), loaded 
with the perfect drain. In the SGW the source and drain are 
implemented with coaxial probes. The perfect drain is 
realized using a circuit (made of a resistance and a 
capacitor) connected to the drain coaxial probes. Super-
resolution analysis for this device is done in Comsol 
Multiphysics. The results of simulations predict the super-
resolution up to  /3000 and optimum power transmission 
from the source to the drain. 

1. Introduction 

“Super-resolution” stands for the capacity of an optical 
system to produce images with details below the classic 
Abbe diffraction limit. In the last decade super-resolution 
has been shown experimentally with devices made of left-
handed materials [1][2] (that is, materials with negative 
dielectric and magnetic constants) [3][4].  Unfortunately, 
high absorption and small (wavelength scale) source-to-
image distance are both present in these experiments. 
Nevertheless, these devices have been claimed to reach the 
theoretical limit of infinite resolution  [4]. 

An alternative device for perfect imaging has recently been 
proposed [6][7]: the Maxwell Fish Eye (MFE) lens.  Unlike 
previous perfect imaging devices, MFE uses materials with a 
positive, isotropic refractive index distribution. This device 
is very well known in the framework of Geometrical Optics 
because it is an Absolute Instrument [5], so every object 
point has a stigmatic image point. 

Leonhardt [6] analyzed Helmholtz wave fields in the MFE 
lens in two dimensions (2D). These Helmholtz wave fields 
describe TE-polarized modes in a cylindrical MFE, i.e., 
modes in which electric field vector points orthogonally to 
the cross section of the cylinder. Leonhardt found a family 
of Helmholtz wave fields which have a monopole 
asymptotic behavior at an object point as well as at its 
stigmatic image point. Each one of these solutions describes 
a wave propagating from the object point to the image point. 
It coincides asymptotically with an outward (monopole) 
Helmholtz wave at the object point, as generated by a point 
source, and with an inward (monopole) wave at the image 
point, as it was sunk by an “infinitely-well localized drain” 
(which we call a “perfect point drain”). This perfect point 
drain absorbs the incident wave, with no reflection or 
scattering. This result has also been confirmed via a 
different approach [8].  

The physical significance of a passive perfect point drain has 
been controversial [9]-[18]. In references [5] and [6] the 
perfect point drain was not physically described, but only 
considered as a mathematical entity (a point drain is 
represented by Dirac-delta as the point source). However, a 
rigorous example of a passive perfect point drain for the 
MFE has recently been found, clarifying the controversy 
[19]. It consists of a dissipative region whose diameter tends 
towards zero and whose complex permittivity  takes a 
specific value depending on the operation frequency.   

Two sets of experiments have recently been carried out to 
support the super-resolution capability in the MFE. In the 
first one, super-resolution with positive refraction has been 
demonstrated for the very first time at a microwave-
frequency (λ=3 cm) [20][21]. The experimental results 
showed that two sources with a distance of λ/5 from each 
other (where λ denotes the local wavelength λ = λ0/n) could 
be resolved with an array made up of 10 drains spaced λ/20, 
which exceeded the ~λ/2.5 classic diffraction limit. Results 
with closer sources were not reported, but it should be noted 
that this experiment was limited to the resolution of the 
array of drains.  

The second set of experiments has been carried out for the 
near infrared frequency ( = 1.55 µm), but resolution below 
the diffraction limit was not found [22]. The authors assume 
that the failure in the experimental demonstration is due to 
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manufacturing flaws in the prototype.  

Although the perfect drain has not been used in these 
experiments, i.e. there was a reflected wave from the drain 
to the source, the MFE has shown super-resolution for 
microwave frequencies. This means that the perfect drain is 
not necessary for reaching the super-resolution (see [23]). 
However, in this paper we will show that the use of the 
perfect drain increases super-resolution. 

Recently, a device equivalent to the MFE, Spherical 
Geodesic Waveguide (SGW) made for microwave 
frequencies has been presented [23][24]. The SGW is a 
spherical waveguide filled with a non-magnetic material and 
isotropic refractive index distribution proportional to 1/r 
(ε = (r0/r)2 and μ = 1), r being the distance to the center of 
the spheres. Transformation Optics theory [25] proves that 
the TE-polarized electric modes of the cylindrical MFE are 
transformed into radial-polarized modes in the SGW, so 
both have the same imaging properties. When the waveguide 
thickness is small enough, the variation of the refractive 
index within the two spherical shells can be ignored 
resulting in a constant refractive index within the 
waveguide. In [23] the SGW has been analyzed using two 
coaxial probes (source and drain) loaded with the 
characteristics impedance. The results have shown the 
super-resolution up to /500 for a discrete number of 
frequencies, called notch frequencies, that are close to the 
well known Schumman Resonance frequencies of spherical 
systems. For other frequencies the system did not present 
resolution below diffraction limit. In these analysis the 
perfect drain has not been used, thus beside the incident 
wave, a reflected wave existed in the SGW as well.  
However, the super-resolution properties have been shown.  

Herein, we present an improvement of the super-resolution 
using the SGW with the perfect drain. The perfect drain is 
realized using a circuit (made of a resistance and a 
capacitor) connected to the drain coaxial probe. The 
difference between the presented drain and the perfect drain 
proposed in [19] is the practical realization. While in [19] 
the perfect drain is made of a material with complex 
permittivity , here it is only a coaxial line loaded with a 
resistor and a capacitor of conventional values (for example, 
R=2.57Ω and C= 55.05pF for f=0.25 GHz).  Using the 
circuital model for the perfect drain, the Comsol simulations 
have shown the super-resolution up to /3000 for the same 
discrete frequencies as in [23], which is much higher than 
the /500 obtained without perfect drain. 
In section 2, it is described the complete microwave circuits. 
In section 3 modal analysis of the SGW is made including: 
the rigorous procedure used to find the perfect drain, the 
analysis of the transmitted and evanescent modes and the 
concept of voltage and current wave in the SWG. Discussion 
and conclusions are presented in section 4. 

2. Microwave circuit and parameters of the 
simulation. 

The SGW is bounded by two metallic spherical shells. The 
media between the shells is air. Two coaxial probes have 
been used to simulate the source and drain in the SGW. 
Consider the microwave circuit consists of the generator Vg 
with the impedance Zg (on the source port side), coaxial 
lines, the SGW, and the load with the impedance ZL (on the 
drain port side), as shown in  Figure 1. 

 
 
 
 
 
 
 
 
 
The same circuit has been analyzed in [23] with the 
condition ZL=Zg=Z0, where Z0 is the characteristics 
impedance of the coaxial line, so we have: 

2
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max

| | loadP
S

P
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Where, S21 is the scattering parameter of the circuit [26], 
Pload is the power delivered to the load ZL and Pmax is the 
maximum power that can be delivered by the generator. In 
[23] the results have been presented using function |S21|

2 
obtained for different frequencies and displacements .  
Here, in Section 4, it is repeated the same procedure using 
the impedance that simulates the perfect drain (it will be 
calculated in Section 3 and will be called Zpd). The circuit is 
designed in Comsol with the conditions ZL=Zg=Zpd (see 
Figure 1). The super-resolution is analyzed via function 
Pload/Pmax for different frequencies and displacements. Note, 
that now Pload/Pmax is different from |S21|

2. 
 

Source

Coaxial line

Spherical
Wave 
Guide RM

Rm

Coaxial line



Vg Zg

Load

L

Figure 1 Complete microwave circuit analyzed in this 
paper formed by: the source (Vg and Zg) connected to a 
coaxial transmission line of length L, the load 
connected (ZL) to other identical transmission line and 
the spherical waveguide. RM and Rm are radius of the 
external and internal metallic spheres. 
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3. Modal analysis of the structure and numerical 
procedure to find the perfect drain. 

The perfect drain, defined by the impedance ZL, absorbs all 
the incident radiation without reflection inside the SWG 
when the source and drain are placed in opposite pole 
(=0). In this section we present a rigorous procedure to 
find this impedance for a wide band of frequencies. The 
structure does not depend on the cylindrical (coaxial) and 
spherical (SWG) coordinate , thus: 

- The unique modes of the coaxial guide without  
dependence are the TEM modes, so in the interface 
between the coaxial and sphere only exist the TEM 
modes, incident and reflected [26]. 

- Inside the SGW the electric and magnetic fields are 
necessary of the form: 

( , ) E ( , ) E ( , )

( , ) H ( , )
rr r r

r r




  
 
 



E r
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       (2) 

The complete analysis of the modes is done using the same 
procedure explained by Wu in [27] on a radial-line/coaxial-
line junction. Figure 2 shows the complete region of the 
junction separated into three regions: the coaxial (region 1), 
the SGW (region 2) and the common region (region 3). The 
electronic field is calculated in each of these three regions 
using the procedure described below.  

z



a

b

a

b
Region 1

Region 2

Region 3

 

Figure 2 Three regions of the junction used for the analysis. 
The coaxial is the white region, the SGW the blue and the 
common region is the read. a and b are the angles in 
spherical coordinates covered by the inner and outer 
conductor of the coaxial. 

The dimension of the structure analyzed here are 
(Figure 1 and  Figure 2): 

- RM=1005 mm. 

- Rm=1000 mm. 

- a=5 mm (a= 0.285º) 

- b=10 mm (b=0.57º) 

- L=20 mm.  

3.1. Field in the coaxial line (region 1). 

Due to the symmetry of the structure, the field of the coaxial 
probe is completely described by the TEM modes of the line 
[26]: 
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Where a and b are the diameters of the internal and external 
coaxial (Figure 2),  and z the cylindrical coordinates, ko the 
propagation constant and Ve

+ and Ve
- constants. With the 

condition b << RM, on the surface z=0 the approximation 
=RMsin() can be used (Figure 1and  Figure 2).  
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3.2. Field in the SGW (Region 2). 

With the condition RM – Rm << RM one complete set of 
solutions inside the SWG fulfilling the boundary condition 
of metallic surfaces is [28]: 
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Where An and Bn are constants and Fvn and Rvn, are called 
Forwards and Reverse Legendre functions defined as: 
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Pvn and Qvn , are the Legendre function of first and second 
kind. 
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3.3. Field in the common region of coaxial and SGW 
(region 3). 

The solution in this region has the same form as the solution 
expressed in Equation (5), but now having an additional 
term, one particular solution, necessary to fulfill the 
boundary conditions at the common surfaces. 

 

2

2
0

' '

' '
0

( , ) (cos( ) (cos( ))

( )
( cos( ))

1
( , ) (cos( ) (cos( ))

( )
sin( ) ( , )

( , ) (cos( ) (c

n n

vn n

vn n

r n v n
n

m

M m M m

n n
n

m
p

M m M m

n n

E r D F E R

r R nn
k

R R R R

E r D F E R
r

r R nn
E r

R R R R

H r j D F E R











  



  

 

  

   

          

   




 

  





os( ))

( )1
cos( ) ( , )

n

m
p

M m

r R n
H r

r R R






 
 








 (7) 

 
Where the particular solution Ep and Hp has to fulfill the 
Maxwell equations and the boundary conditions at r=RM and 
r=Rm. 
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From the second equation in (8), it is necessary: 
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Solving the differential Equation (9), the particular solution 
for  the fields Ep an Hp is obtained: 
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Where a1 and a2 are two integration constants. These 
constants are obtained using the boundary conditions for Ep 
at r=RM and r=Rm (Ep=0 for metallic surface): 
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The fields defined in Equations (10) and (11) can be 
expresed as follow: 
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Where dn and en are the expansion constants satisfying 
jωdn=-en. The complete field in this region is then: 
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In the coaxial line (on the drain side) the term for the electric 
field has the same form (Ve has to be replaced by Vs,   by -
, Dn by Gn and En by In): 

3.4. Transmitted and not transmitted modes. 

Different modes inside the sphere are defined by n=n+jn 
(see Equation (5)), which is in general a complex number. 
According to the asymptotic expression of Legendre 
functions Pvn(x) and  Qvn(x) for x close to 1 and -1 the 
following results are obtained [29]: 
 

(cos( ))

(cos( )) (0)
0

(cos( ))
(0)

(cos( ))

Im[ ] ( ), Gamma function

n
n

n

n n

n

n n

F e

F
for

R
e

R






 

 



  

 






 



 





 

  

 (14) 

 
Having in mind the SGW dimension and the frequencies of 
interest (the microwave frequencies from  0.2 GHz to 
0.4 GHz) the parameter n is real only for n=0. For example 
for f=300 MHz, 0 =4.98, 1 =-0.5+631.4j, 2 =-0.5+1262.9j 
etc. Figure 3 shows for example the graphs for 
Log(|Fvn(cos())/Fvn(cos(b))|) and 
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Log(|Rvn(cos())/Rvn(cos(b))|) respect to  for one complex 
n=-0.5+4.0j (b is defined in Figure 2). Clearly |Fvn(cos())| 
suffers a near exponential attenuation between =b and 
=-b as shown in Equation (14). The same occurs for 
|Rvn(cos())|  between =-b and =b. The similar results 
are found for every complex n, so Fvn(cos()) and 
Rvn(cos()) can be considered evanescent waves. The SWG 
works as a single-mode with the electric and magnetic fields 
far for the interface region given by: 
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The Poynting vector and transmitted power through a 
surface, defined by =cte, in the direction  have the 
following form: 
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This equation explains clearly the concept of F0 and R0 as 
incident and reflected waves. 

 
 
 
 

 

 

3.5. Boundary conditions. 

The coefficients An and Bn from Equation (5), Dn, En, Gn and 
In from Equation (7) are obtained using the following 
boundary conditions (Figure 2): 

- Tangent electric field in the inner conductor is null. 
- Electric and magnetic field are the same in the 

common surface between regions 1 and 2. 
- The same conditions in the coaxial at the drain side. 
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Where a and b are defined in Figure 2. When the voltage 
in the two coaxial lines (Ve=Ve

++Ve
- and Vs=Vs

++Vs
- ) are 

known, the system (17) can be solved for each n. 

3.6. Perfect Drain. 

According the previous analysis, the SGW work as a single-
mode guide, so the condition for the perfect drain (there is 
no reflected wave in the guide) is satisfied when B0=0 in 
Equation (15). The procedure to obtain the perfect drain 
consists of the following steps: 

- In Equation (17) for n=0 it is imposed the condition 
B0=0. Then A0, D0, E0, G0, I0 and Vs

++Vs
- are 

calculated. Vs
++Vs

- is the necessary voltage (on the 
drain side coaxial) for perfect wave absorption in 
the SWG.  

- The coefficient An, Bn, Dn, En, Gn and In are 
obtained using Equation (17) and the voltage 
Vs

++Vs
- calculated in the previous step. 

- The field H for r=RM and a <  < b is computed 
using  Equation (13). 

- For the sake of uniqueness of solution, this field 
has to depend on  as in Equation (4). The voltage 
Vs

+-Vs
- is then obtained. 

- The impedance of the coaxial line at r=RM and the 
load are defined as: 
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Figure 4 shows the real and imaginary parts of the perfect 
drain impedance calculated for a band of frequencies of 
interest, the results show some oscillation due numerical 
error in the calculation. Linear approximation is presented. 
Figure 5 shows the comparison between the module of the 
theoretical electric field (in the case of the perfect drain, 
there exit only forward wave, given by the function Fv0()) 
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Figure 3 Graphs for Log(|Fvn(cos())/Fvn(cos(b))|) 
and Log(|Rvn(cos())/Rvn(cos(-b)| ) as function of  
for n=-0.5+4.0j. Fvn(cos()) and Rvn(cos()) have a 
near exponential attenuation similar to the evanescent 
waves in conventional waveguides. The modes with 
complex n are not transmitted. The only modes that 
exist inside the SWG far from the interface are the 
modes having real n.  
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and the module of the electric field simulated in COMSOL. 
Although the theoretical value of the electric field at =0 
and =is infinite (due to the properties of the Legendre 
functions), for the sake of clearness of the graphs in Figure 5 
we did not extend the theoretical graph to these points. 
Figure 5 shows perfect matching between the theoretical and 
simulated fields for f=0.25 GHz. The circuit parameters are 
calculated using the linear approximations presented in 
Figure 4, R=2.57Ω and C= 55.05pF. 

 
 

 

 

 

 

 

4. SR analysis of the SGW matched with the 
perfect drain. 

The SGW with the perfect drain is designed and analyzed in 
Comsol, in the same way as described in [32] In order to 
show super-resolution properties of the SGW, we have made 
several simulations for different displacements of the drain 
port, and for different values of frequency.   

4.1. Pload/Pmax as function of frequencies for different 
drain port position. 

We have computed Pload/Pmax using COMSOL for a 
frequency range between 0.2 GHz and 0.4 GHz for different 
positions of the drain port. The source port is fixed at the 
source’s image point, that is, = 0, while the drain port is 

shifted λ/N (for λ=1m corresponding to 0.3 GHz and 
N>100) in the neighborhood of the image point, that is, = 
, see Figure 1. When the drain port is placed in the image 
point, all the power is delivered perfectly. This can be 
achieved for all the frequencies using corresponding perfect 
drain impedance (Figure 4). However, when the drain is 
moved from the image point, some of the power reflects, so 
the power delivered to the drain decreases. This power drop 
is extremely abrupt for some frequencies very close to the 
Schumann frequencies, called notch frequencies (see also 
[23]). 

Figure 6 shows Pload/Pmax as function of the frequency in a 
narrow band around a notch frequency (close to  =5) for 
different drain port positions. The notches get wider when 
the drain port is shifted further from the image point of the 
source, but the null of Pload/Pmax remains fixed.The 
frequencies corresponding to these nulls are called notch 
frequencies. 

 

 

 

 

 

 

The curves correspond to different shifts of the drain port. 
The shifts are in all cases much smaller than wavelength 
(from λ/100 to λ/3000 with λ=1.15084047 m that correspond 
to f=0.2606874 GHz, see Figure 6). These results are quite 
surprising, since close to a specific frequency the power 
transmitted to the drain port suddenly reduces to a value 
near zero.  

4.2. Pload/Pmax as function of drain port shift for different 
frequencies. 

Since Pload/Pmax is proportional to the transmitted power, the 
graph representing Pload/Pmax versus the shift (Figure 7) is 
equivalent to the Point-Spread-Function (PSF) commonly 
used in Optics. This equivalence may seem surprising since 
the PSF is defined as the square of the electric field 
amplitude calculated in the absence of absorbers in the 
image space, and Pload/Pmax is defined in terms of the power 

Figure 4 Real (in red) and imaginary (in blue) parts 
of the perfect drain impedance for different 
frequencies. 

Figure 5 The module of the theoretic electric field (in 
red) and the modul of the electric filed simulated in 
Comsol (in blue) for the SGW with the perfect drain.

Figure 6 Detail of Pload/Pmax as function of the frequency in 
a narrow band around a notch frequency for different drain 
port positions. The notch frequency is f=0.2606874 GHz. 
(=4.996). The nearest Schumann frequency is 
f=0.26086609 GHz (=5) which is out the range of this 
Figure. 
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transmitted to an absorber. However, the equivalence comes 
from the fact that, in Optics, the detection at the image is 
assumed to be made with a sensor which does not perturb 
the free-space fields; or that even if it does perturb the fields, 
it is assumed that still the sensor signal is proportional to the 
field amplitude (or its square, which is the PSF. Figure 7 
shows Pload/Pmax versus the drain port shifts for two 
frequencies. The blue curve corresponds to f=0.2847 GHz, 
i.e., far from a notch frequency (= 5.5).  
Let us define “resolution” as the arc length (in wavelength 
units) that a drain port needs to be shifted so Pload/Pmax drops 
to 10% (not far from the Rayleigh criteria in Optics, which 
refers to the first null). With this definition, the diffraction 
limited resolution given by the blue curve is /3. The red 
curve corresponds to notch frequency f=0.26068741 GHz ( 
=4.996) which clearly shows a much better resolution. 
 

 
 
 
 
 

Figure 8 is a blow-up of Figure 7 in the upper neighborhood 
of a notch frequency. The graph for frequencies slightly 
below the notch frequency is similar. Note that Figure 8 
shows the same information as Figure 6 but plotting 
Pload/Pmax vs. the drain port shift (expressed in units of λ) and 
using the frequency as a parameter. 

 

 

 
 
From the orange to the red curves, increasing resolutions are 
achieved: 0.007 λ (that is, λ/140) for the orange to λ/3000 for 

the red. The latter, whose frequency f=0.26068741 GHz 
corresponds to  =4.99636) is the highest resolution that we 
have obtained. Computations for frequencies near the notch 
frequency show essentially null Pload/Pmax values for shifts > 
λ/3000 (as in the red line in the picture). Pload/Pmax values for 
shifts below λ/3000 (excepting no shift or shifts very near to 
zero) and frequencies near a notch frequency are 
inconsistent (the solver did not converge to a single solution 
due to numerical errors). It seems that Leonhardt’s assertion 
of infinite resolution (i.e., perfect imaging) may occur for 
the discrete notch frequencies in the SGW, although the 
mentioned inconsistencies have prevented us from 
numerically predicting resolutions beyond λ/3000. 

 

  
 
 
 
The λ/3000 resolution is achieved only for a narrow 
bandwidth ( 10 Hz, which is much smaller than the notch 
frequency 0.3GHz). If larger bandwidths are needed, lower 
resolutions (but still sub-wavelength) may be achieved. 
Figure 9 shows the bandwidth vs. N, meaning that the 
resolution is better that λ /N. The bandwidth has been 
calculated as fmax− fmin with fmax and  fmin fulfilling Pload/Pmax 

(fmax)=Pload/Pmax (fmin) =0.1, using the information of the 
curves in Figure 6. The linear dependence shown in Figure 9 
(slope -2) reveals that the product N 2bandwidth is constant 
in the range analyzed here.  

5. Discussion. 

Leonhardt in [6] and [7] suggested that MFE should produce 
perfect imaging for any frequency using perfect drains. 
However, the experiments in [20][21] and simulations from 
[23], have shown super-resolution properties of the MFE, 
although the perfect drain has not been used. In these 
references, the coaxial probes were loaded with their 
characteristic impedances, so the absorption of the incident 
wave was not perfect. Leonhardt assumed that the ability of 
the MFE to propagate the wave, generated by a point source, 
toward to a perfect point drain was enough to guarantee 
perfect imaging. This does not seem to be sufficient, since it 
does not provide information on how much power the drain 
will absorb when it is displaced out of the image point. The 
simulations presented here show that super-resolution only 

Figure 7 Pload/Pmax as function of the drain port shift 
for a frequency near a notch one (red curve) and for a 
frequency far from the notch one (blue curve). 

Figure 8 Pload/Pmax as function of the drain port shift 
for different frequencies corresponding to super-
resolution between λ/3000 and λ/140. 

Figure 9 Bandwidth as a function of the resolution. The 
abscissa axis shows N, meaning that the resolution is better 
than λ /N.
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happens for a particular set of frequencies known as notch 
frequencies, the same one as in [23]. The presented results 
have shown maximum super-resolution /3000, which is 
much higher than in the case where there were not perfect 
drains (/500, see [23]). Also, the frequency bandwidth has 
increased 20 times, e.g. for /500 the bandwidth is about 
400 Hz (Figure 9), while in [23] it was only 20 Hz.   
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