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Abstract
The current  industry needs for new results require current 
capabilities of computer technology can solve problems on 
a  whole  new  level.  This  article  briefly  describes  the 
algorithms for obtaining the structures and the appearance 
of discontinuities in the growth of crystals.

1. Introduction
Solution of some technological issues requires study the 

internal structure of electron shells. There is a problem of 
explaining  the  phenomenon  of  increasing  orders  of  the 
electronic resistivity silicon with the introduction of a probe 
by the diffusion of electrons. To elucidate the structure of 
the outer  electron  shells  of  the 18 copper  is  an  essential 
knowledge  of  the  inner  radius  of  these  shells  that  is  the 
outer radius of the lower shells. Reference data on X-ray 
spectra  have become an  important  and reliable  source  of 
information  on  the  geometrical  dimensions  of  the  inner 
electron shells of atoms of any chemical element.

2. Computer simulation of Cu structure

For  example,  for  copper  Z  =  29,  R  =  0,004915  nm. 
Computer  simulation  was  carried  out  in  the  cluster 
approximation, which consists in the fact that the volume of 
the crystal was cut limited selection, the initial positions of 
the atoms which correspond to their positions in the nodes 
of the real crystal lattice. For copper in figure 1 is shown the 
sphere-rod  model  third  sphere  of  the  fcc  lattice  with  24 
atoms, but the model is rotated 45є around the axis z.
In figure 2 is shown the sphere-rod model seventh sphere 
fcc lattice with 48 atoms. The model is rotated 45є about 
the axis of x. Atoms and bond rods are shown in different 
colors.

The modeling of properties shows that the crystal 
structure within a certain distance a gap of uniform growth 
occurs in the distances from the central atom. For copper, a 
spatial gap occurs after  321-th atomic node in the cluster. 
Further, these discontinuities are repeated periodically. And 
this is a defect associated with impaired growth are not in 
real  crystals  and  the  properties  of  the  ideal  lattice.  The 
instability of the first cluster and the introduction of a defect 
in  the  corresponding  crystal  structure  is  the  very  first 
principle on which to conduct a fairly accurate analysis of 

the growth process of a real crystal and the resulting defects 
in it.

Figure 1:  The sphere-rod model third sphere model of the 
fcc lattice with 24 atoms. The model is rotated 45є around 
the  axis  z.  Atoms and  bond rods  are  shown in  different 
colors.

Figure  2:  The sphere-rod model seventh sphere model of 
the  fcc  lattice  with  48  atoms.  The  model  is  rotated  45є 
about  the  axis  of  x.  Atoms and  bond rods are  shown in 
different colors.

Copper  is  a  metal,  but  also  for  semiconductors, 
computer  simulation  provides  essential  information  for 
subsequent  analysis  of  the  process  of  their  growth  and 



ultimate properties. For example, computer simulation was 
conducted for the AsGa in the cluster approximation, which 
consists in the fact  that the volume of the crystal  was cut 
limited selection, the initial positions of the atoms of which 
comply with their provisions at the nodes of the real crystal 
lattice.
The lattice with a radius of 6 in her coverage of the atomic 
cores  is  considered.  Calculation  of  the  AsGa  parameters 
were  performed  using  the  package  we  have  created 
programs.  As  a  cluster  model  was  chosen  918-atom 
fragment  of  the  crystal  lattice  of  quantum dots  based  on 
GaAs.  The  properties  of  clusters  depend  on  their  size. 
Electron spectroscopy gives information averaged over the 
ensemble non isometric clusters  on the surface and in the 
bulk solid. Therefore, to improve the accuracy and reliability 
of  the  information  is  necessary  to  create  ensembles  of 
clusters with a low dimensional variance.
Consider the finite crystal  with unbroken intervals (except 
for the crystal boundary violation). For simplicity, we take a 
large  number  of  cores,  when  there  is  a  nearly  ideal 
periodicity  of  the  crystal.  In  this  case,  the  parameters 
obtained from the mathematical formalism for the analysis 
of the band spectrum are periodic functions, except for the 
boundary  of  the  crystal.  The  crystal  potential  and  wave 
functions have a period equal  to the distance between the 
cores, depending on the chosen direction. The energies have 
multiple frequency modulus of the wave vector in the quasi-
momentum space [1]-[3]. Now turn to the crystal with a very 
small number of cores. In such a crystal frequency is not as 
ideal  as  in  the  previous  case.  The  simulation  of  such  a 
crystal is insurmountable difficulties for traditional methods, 
but this is the case is taken by us as a basic demonstration 
version.  The  object  in  question  is  distant  from  a  perfect 
crystal due to its limited size. And despite this, the technique 
presented  by  us  showed  the  periodicity  of  the  above 
parameters. Thus in our problems are not used the condition 
of periodicity and Bloch's theorem as the necessary initial 
conditions. The figure 3 shows it on the example of GaAs.

Figure 3: The As atoms and Ga for the radius of coverage 6. 
Red marked  atoms As,  in  blue denote atoms Ga.  Central 
atom is As.

2.1. Computer modeling of the crystal structure of GaAs

In  computer  modeling  of  the  crystal  structure  of  GaAs, 
combined with three-and five-valent elements are observed 
the following regularities (see Table I).  When the radius of 
coverage is two in this range there are 38 cores. As the first 
atomic core in the center of origin, the four Ga atoms are 
located at a distance of 3 next 12 As atoms at a distance of 8. 
Nine Ga atoms at a distance there are 11. Six As atoms at a 
distance of 16, three Ga at a distance of 19 and three Ga at a 
distance of 27.

Table 1: The Combined lattice GaAs.
№ x y z d2 Ion
0 0 0 0 0 As
1 −1 −1 1 3 Ga breaking
2 −1 1 −1 3 Ga
3 1 −1 −1 3 Ga
4 1 1 1 3 Ga
5 0 2 −2 8 As breaking
6 0 2 2 8 As
7 0 −2 −2 8 As
8 0 −2 2 8 As
9 −2 2 0 8 As
10 −2 −2 0 8 As
11 2 2 0 8 As
12 2 −2 0 8 As
13 −2 0 2 8 As
14 −2 0 −2 8 As
15 2 0 2 8 As
16 2 0 −2 8 As
17 1 3 −1 11 Ga breaking
18 1 −1 3 11 Ga
19 −3 1 1 11 Ga
20 −1 3 1 11 Ga
21 3 1 −1 11 Ga
22 1 −3 1 11 Ga
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23 −1 1 3 11 Ga
24 3 −1 1 11 Ga
25 1 1 −3 11 Ga
26 0 4 0 16 As breaking
27 −4 0 0 16 As
28 4 0 0 16 As
29 0 0 −4 16 As
30 0 0 4 16 As
31 0 −4 0 16 As
32 3 3 1 19 Ga breaking
33 1 3 3 19 Ga
34 3 1 3 19 Ga
35 1 5 1 27 Ga breaking
36 5 1 1 27 Ga
37 1 1 5 27 Ga

Total number of cores with zero: 38
From this calculation, the differences in distance between 
the various groups are as (1): 

Δr1 = r2−r1=3
Δr2 = r3−r2=5,
Δr3 = r4−r3=3,
Δr4 = r5−r4=5, (1)
Δr5 = r6−r5=3,
Δr6 = r7−r6=8.

We observe quasiperiodic change in the difference. At the 
border radius of coverage this periodicity is broken. When 
increasing the radius of coverage this periodicity is restored 
to  the  previous  radius,  but  is  broken  on  the  new  range. 
Thus,  the  boundary  conditions  lead  to  a  violation  of  the 
periodicity.  Simulated  lattice  shown  in  the  following 
figures. The first figure shows the four first neighbors As in 
the lattice.  Neighbors’  ions  Ga (blue)  form a tetrahedron 
with the center of As (red).
The  boundary  atoms  can  approximately  account  for 
modeling the interface of the quantum dot with the matrix. 
The figure 4 shows the grid with a radius of coverage 1. 
There  are  5  atomic  cores  in  it.  There  is  a  periodic  step 
structure. The structure of the central ion and its neighbors 
on the tetrahedron is stored and located in the center of this 
lattice.

Figure 4: The grid with a radius of coverage where there are 
5 atomic cores.

The figure 5 shows the grid with a radius of coverage 2. 
There  are 38 atomic cores  in it.  There  is  a  periodic step 
structure. The structure of the central ion and its neighbors 
on the tetrahedron is stored and located in the center of this 

lattice.  The  figure  6  shows  the  grid  with  a  radius  of 
coverage 3. There are 110 atomic cores in it. There is again 
a  periodic  step  structure.  The  structure  of  the  previous 
lattice is preserved. And while the structure of the central 
ion  and  its  neighbors  on  the  tetrahedron  is  stored  and 
located in the center of this lattice. The figure 7 shows the 
grid with a radius of coverage 4. There are 282 atomic cores 
in it. Again, there is a periodic step structure. The structure 
of the previous lattice is preserved. Again, the structure of 
the central ion and its neighbors on the tetrahedron is stored 
and located in the center of this lattice. The figure 8 shows 
the grid with a radius of coverage 5. There are 498 atomic 
cores in it. There is a periodic step structure. The structure 
of the previous lattice is preserved. And the structure of the 
central ion and its neighbors on the tetrahedron is stored and 
located in the center of this lattice.
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Figure  5:  The grid with a radius of coverage 2 where there 
are 38 atomic cores.

Figure 6: The grid with a radius of coverage 3. where there 
are 110 atomic cores.

Figure 7: The grid with a radius of coverage 4. where there 
are 282 atomic cores.

Figure 8: The grid with a radius of coverage 5. where there 
are 498 atomic cores.

The figure 1 shows the grid with a radius of coverage 6. 
There are 918 atomic cores in it. There is a periodic step 
structure. The structure of the previous lattice is preserved. 
And the structure of the central ion and its neighbors on the 
tetrahedron is stored and located in the center of this lattice.
It  can be seen as an increase in the radius of coverage is 
restored periodicity in the lattice covered by the previous 
radius and there is a new violation of the periodicity on the 
boundary spanning lattice. The depth of violation increases 
with the radius of coverage.  This is  well  observed in the 
tables you demonstrated for different cores. 
On the basis of the direct lattice can construct the reciprocal 
lattice and define the properties of the Fermi surface. And 
the radius of coverage can be taken arbitrary (millions of 
skeletons). 
The  calculated  structure  allows  to  reach  a  real-time 
implementation and to take into account of defects and of 
real devices based on GaAs, because these are high-speed 
computing now by our proposed method. 
On the basis of the direct lattice we can also construct the 
reciprocal  lattice  and  define  the  properties  of  the  Fermi 
surface. And the radius of coverage can be taken arbitrary 
(millions  of  skeletons).  High-speed  computing  enables  a 
dynamic  computer  simulation  of  the  properties  of  real 
crystals of the GaAs. 
Since  the  GaAs  lattice  is  identical  to  the  lattice  of  Si, 
sphalerite  and  diamond,  we  can  apply  the  technology 
provided by and for these substances.
In  calculating  of  coordination  spheres  cells  of  FCC- and 
BCC-lattices  are presented  as  superlattice  structure  to  fill 
own nodes by atoms of cells and additional  nodes of the 
simple  cubic lattices  (SCL)  — interstitial  atoms [2].  The 
completing  of  coordination  spheres  with  atoms  is 
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determined on the basis of a small SC-lattice,  taking into 
account octahedral, tetrahedral internodes.
If  atoms in the lattice arrange with the dense packing,  P-
nodes are centers of the inter-body lattices in the methods of 
presentment  of  the  spatial  distribution  of  atoms  and 
internodes  along  the  coordination  spheres  in  the  crystals. 
Tetrahedral  and octahedral  internodes in the ion-interionic 
terminology mean inter-body lattice  space  surrounded by 
the atoms in the crystal lattice nodes.
The Table 1 contains the number of atoms and the distance 
from the central  atom of  the  diamond-like structure.  The 
distance is given in units of the lattice constant a.  Let  us 
choose the maximum distance  based on these  conditions, 
forming  a  set  of  atoms  contributions  on  which  the 
calculation of the potential are taken into account.

3. The crystal potential for crystals with the 
diamond structure

In  this work we consider the crystal  potential for crystals 
with the diamond structure.  The Coulomb potential is the 
sum  of  the  capacity  building  of  the  nucleus  and  the 
electrons occupied levels:

Uc = Un + U0, (2)

where Un = −2Z/r. Here,  Z — number of the element,  r — 
distance from the atom to the specified point.
Potential Uо is a solution of the Poisson equation:

∇2Uо = –8 πρо(r), (3)

where ρо(r) — the density of the electrons of the occupied 
levels  at  the distance  r  from the center  of  the atom. The 
density is calculated as follows:

( ) ( )∑=
ln

nl rRrr
,

22
0 .ρ (4)

Function  Rnl(r)  —  the  radial  part  of  the  electron  wave 
function for a hydrogen atom [4], [5]. Using the principle of 
superposition of the electronic densities and the additivity 
of the integral equation (3) can solve as follows:
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0
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=
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i
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( ) ( ),
,
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where I — the set of the number of atoms minus one, ri — 
the distance from the center of the i-th atom to the specified 
point

.ii arr  −= (7)

Here ai — the radius-vector of the i-th atom with respect to 
the center of origin. Let us obtain the Poisson equation for 
an electron of i-th atom:

( ) ( ).π8 222

inli rRrru inl
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Solving (8), we obtain

( ) ( ) .π8
,

2∑ ∫∫−=
ln

iinli rdruru 
(9)

Directly  using  the  functions  (5,  6,  7,  8,  9)  we  find  the 
potential  U0(r).  This  approach  allows  us  to  calculate 
effectively  and  accurately  the  electronic  potential.  We 
rewrite  the expression (2)  accounted  for  the entire  set  of 
atoms:

( ) ( ) ( ) .0 rUrUrU
i

inс
 += ∑ (10)

Thus,  the  Coulomb  potential  is  calculated  from  all  the 
surrounding atoms [1], [6].
This approach allows us to select any line capacity in any 
direction from the lattice points, and may be any length of 
line. Moreover, we can specify a curved line capacity.
The cell potential near the nucleus has a singularity, and the 
distance from the nucleus is close to zero in hyperbole. For 
a  single  atom  inside  the  Wigner-Seitz  sphere  the  main 
contribution comes from the nucleus of an atom [6], [7].
Consider the cell potential obtained at the line potential. In 
this  case,  clearly  seen  the  potential  frequency,  which  is 
created by all the atoms are now set. In passing through the 
core potential becomes singular. The potential between the 
atoms is identical and negligible in the magnitude. There is 
a little effect of the atoms located at the centers of the faces 
of the two face-centered cubic lattices [8].
The obtained simulation results show the crystal potential, 
the crystal can be modeled with all its features. In contrast 
to known methods of calculating of the crystal potential as 
described  in  the  engineering  calculations  of  the  crystal 
potential  is  universal.  It  gives  the results  without making 
any  correction  factors,  does  not  require  the  use  of 
logarithmic  scales,  and  other  non-uniform,  allows  you  to 
quickly calculate the crystalline potential for all elements of 
the  given  crystal  structure.  There  are  facilities  for  the 
further developments of such technology in the direction of 
accounting  for  various  disturbances.  It  will  allow  a 
calculating  the  electronic  potential  even  more  precisely. 
However, even without taking into account the properties of 
an  ideal  crystal,  this  calculation  provides  sufficiently 
accurate  results.  To illustrate the power and versatility of 
the described technique for the calculating of the potential 
capabilities  it  is  shown  an  interaction  potential  on  line 
drawn along the main diagonals  of  the two face-centered 
cubic lattices in figure 9.
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Figure  9:  An interaction potential on line drawn along the 
main diagonals of the two face-centered cubic lattice.

In  determining the energy spectra of quantum-mechanical 
problems for periodic structures,  it  often uses methods of 
the broadcast. In particular, semiconductors have a periodic 
structure.  The crystal  potential,  having the grating period, 
usually modeled by the expression [1], [9]:

( ) ( ) ( ) ( ).exh0
0
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N

i
i

 ++
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(11)

where  Vn(ri) — the potential created by the i-th nucleus at 
the point r;  U0(r) — the electronic potential, formed by the 
electrons of the core at some point r and is determined from 
the Poisson equation

( ) ( ).π8 00
2 rrU  ρ−=∇ (12)

Here ρ0(r) — the electronic density of the occupied levels at 
a  distance  r from  the  center  of  the  atom;  Vexh(r)  —the 
exchange  potential  at  point  r;  ri=r-ai — the  distance 
from the i-th node to the point r; ai — the node location; N 
— the number of neighbors taken into account relatively to 
the cores.  The solution of Schrцdinger  equation based on 
the potential (11) is carried out by the Hartree-Fock-Slater 
[10].
The specificity of a solid compared to other bodies, is the 
decisive role of spatial-structural properties: a lattice type, a 
location and an interaction of the defects, a structure of core 
lattices and inter-ionic space. The period of the inter-ionic 
lattice coincides with the period of the core lattice. Spatially 
periodic  structure  of  two  weakly  coupled  and  oppositely 
charged objects is the cause of the stability of rigid body — 
in this case the semiconductor  GaAs — because between 
these objects appear spatially periodic Coulomb forces. In 
the geometric structure of each inter-ionic space surrounded 
on six sides by positive ion cores, and the ionic core in turn 
— intervals. For a uniform distribution of electrons in the 
space  of  interaction  between  them becomes  energetically 
unfavorable.  There  is  the  possibility  of  an  orderly 
arrangement of electrons in space, the emergence of the so-
called  Wigner  or  "electron  crystal".  The  geometrical 
structure of the crystal consists not only of the atomic cores, 
but  inter-ionic  space  intervals.  The  valence  electrons  in 
inter-ionic space intervals are also elements of the crystal, 
along with the atomic cores. The inter-ionic space is gap, 
i.e. the most probable location of the valence electrons. In 

addition, inter-ionic space intervals are also still a kind of 
“elements” of the crystal. But then the conclusion is that in 
the crystal  lattice there are two — the well-known lattice 
consisting  of  the  atomic  cores,  and  another,  equally 
important  for  the  existence  of  the  crystal  lattice  of  the 
valence electrons are concentrated between the cores. The 
lattice periodicity of the atomic cores immediately implies 
the lattice periodicity of the inter-ionic space.  Even more 
natural in such a conclusion, if you do not forget that the 
atomic cores of the crystal lattice — not a point in space, 
but the figures, which occupy a significant part of the whole 
space of the crystal, and inter-ionic space also has a periodic 
structure,  as  well  as  skeletons.  The  period  of  this  lattice 
coincides with the usual of the core of the lattice. Figure 10 
shows a two-dimensional lattice with the lattice constant a0. 
The coordinate origin of the system Oxy is at the center of 
one of the cores,  and the origin of the coordinate system 
O'x'y' is located in the center of one of the inter-ionic cells. 
The coordinate system O'x'y' is formed by the translation of 
the coordinate system Oxy in a0n/2, where n = {0, 1, 2, ...}. 
We assume inter-ionic intervals are the inter-ionic elements 
of the lattice, which is shifted with respect to a core of the 
lattice by half a lattice constant in all coordinate axes.

Figure  10:  A  two-dimensional  lattice  with  the  lattice 
constant  a0. Cores and inter-ionic space two-dimensional 
lattice include 1) frame, 2) inter-ionic space.

The determining the location of the centers of the location 
of  the  centers  of  the  inter-ionic  intervals  can  be  easily 
receive from the definition of the basis vector for the nodes 
of the crystal (the core) of the lattice with any structure. But 
it should be noted that by increasing the radius of inter-ionic 
volumes (not just their centers) there is a change the number 
under the consideration inter-ionic space compared to the 
amount covered by the cores. Since you want to cover all 
inter-ionic  space  surrounding  covered  the  skeletons,  the 
radius  of  coverage  inter-ionic  space  few  more  skeletons 
examined.  Crystal  is  in  a  stable  condition  thanks  to  the 
orderly  arrangement  of  opposite  charges.  Most  of  the 
properties of crystals (eg, electrical conductivity, magnetic 
susceptibility),  are  caused  not  only  property  of  the  host 
lattice,  but  also  the  existence  of  inter-ionic  lattice.  This 
inter-ion  lattice  in  addition  to  the  core  determines  the 
physical  properties  of  the  crystal.  Specificity  of  a  solid 
compared to other bodies is that in them play crucial role 
spatial  structural  properties:  the  lattice  type,  location  and 
interaction of defects, the structure of the nucleus and inter-
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ion lattice. The period of the inter-ion lattice coincides with 
the period of the core lattice. Spatially periodic structure of 
two weakly coupled and oppositely charged objects is the 
cause of the stability of rigid body — in this case the GaAs 
— because between these objects appear spatially periodic 
Coulomb forces.  In  the geometric  structure of each inter-
ionic cell surrounded on six sides by positive ion cores, and 
the ionic core in turn — the inter-ionic gaps.

4. Discussion
Computer simulation of the properties of the crystal lattice 
gives to use up to 1010 ч 1012 atoms. Using the described 
technique  can  be  obtained  from  any  of  these  atomic 
systems,  as  well  as  changes  in  the  radii  of  coordination 
spheres at various distances. Simultaneously, you can get a 
number of nearby neighbors, the location of atoms on the 
coordination sphere.
Thus,  algorithms  are  developed  for  the  FCC,  BCC  and 
diamond-like  structures  for  determining  the  orderly  and 
semiregular  Archimedean and Platonic figures,  as well as 
their complexes.
We can develop an algorithm for constructing the structure 
of  compound  semiconductor-type  A3B5,  based  on  this 
principle.  For  example,  to  the  type  of  A3B5  of 
semiconductor compounds it is used compound GaAs. It is 
crystal  lattice  of  two  face-centered  cubic  lattices  shifted 
relative to each other at ј spatial diagonal. Each Ga atom 
has  four  nearest  neighbors  located  at  the  tops  of  a 
tetrahedron.  Each  ion  is  surrounded  by  four  nearest 
neighboring ions of opposite sign. There are four ions with 
qi qj= –1 at a distance a02Ѕ/2, eight ions of opposite sign of 
qi qj = +1 at the 2 distance a02Ѕ. The system of links of the 
GaAs  structure  establishes  the  order  of  the  atomic  body 
along  tetrahedral  combinations  [2],  [3].  For  such 
compounds of the tetrahedral group of atoms is one-eighth 
of  the  basic  lattice,  so  it  is  convenient  to  consider  as  a 
superstructure. The cell of the GaAs lattice consists of four 
tetrahedral sublattices.
One  of  the  advantages  of  the  described  technique  is  its 
application to systems with short-range order,  which does 
not use Bloch's theorem as the initial conditions. This was 
possible due to the fact that translational invariance follows 
as  a  consequence  of  the  calculations,  and  not  postulated 
initially. Thus, translational invariance in real space and in 
the  quasi-momentum  space  is  not  a  prerequisite  for  the 
determination of the crystal  potential, wave functions and 
energies in wave vector space.
This, in turn, allows you to define these parameters not only 
for infinite crystals, but also for the real limits on the size of 
the  crystals.  Therefore,  it  is  possible  to  determine  the 
properties  of  crystals  with  impaired  structure  of  a  single 
scheme, with no additional idealizations. Individual interest 
is  a  violation  of  the  periodicity  on  the  boundary  of  the 
crystal. In fact, it is inherent in all real crystals violation of 
the ideal (i.e. infinite) crystal structure.
The violation of  a  perfect  crystal  at  the border  no doubt 
affects the theoretical study of the band spectrum. Boundary 
effects appear in the form of decay phase portraits of the 

main parameters (the crystal  potential, the wave functions 
and energies in wave vector space) in all directions of the 
crystal boundaries (in our case spherical).

5. Conclusions
In  the study of solid-state we considered two sites within 
the crystal, virtually connected to each other. A theoretical 
study of solid-state is easily accomplished with the use of 
these  facilities  both  qualitative  and  quantitative  methods. 
But the most effective way of investigating solids is to use a 
direct  computer  simulation,  and  that  we  have  done  for 
simple structures.
Thus, the use of techniques discussed in the article allows 
the  calculation  of  real  properties  of  GaAs  crystals  with 
defects and other constraints.
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