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Abstract

We present a comparative analysis of the tunneling times of electromagnetic (EM) waves propagating in isotropic and anisotropic media. First, suitable expressions for the tunneling times in a layered periodic material, with anisotropic properties originating from its structure, are derived, followed by numerical calculations performed for a new type of anisotropic semiconductor metamaterial. In the first case we have considered a layered structure which contains two differently doped In0.53Ga0.47As semiconductor layers. The second structure under investigation is made of alternately placed layers of doped In0.53Ga0.47As and undoped Al0.48Ga0.52As. The investigation of the dwell time as a function of incident wave frequency has revealed the existence of two peaks, one of which may be interpreted as as a consequence of anisotropy, while the other one corresponds to the peak related to the absorption and the group delay. Both of these two peaks are affected by variations of layers' doping densities. Furthermore, at increased incident angles of incoming EM waves, the dwell time peak occurs at the upper boundary of the frequency interval, for which the structure exhibits negative refractive index. 

1. Introduction

Recently, a lot of attention has been paid to a specific class of artificial materials, called negative-refractive-index metamaterials (NIMs). The theoretical concept behind the interesting possibility of having negative refractive index dates back to the beginning of the 20th century as reported in [1], although most of the references point to the work of Veselago [2]. Depending on the sign of constitutive parameters of a given material (permittivity [image: image1.wmf]e

 and permeability 
[image: image2.wmf]m

), two types of NIMs can be distinguished: single-negative NIMs (SN NIMs) [3] and double-negative NIMs (DN NIMs) [4]. The latter ones are also known as left-handed metamaterials (LHMs), since the electric field, magnetic field and wave vector of propagating EM wave follow a left-hand rule therein. With ongoing progress in technology, the gap between theoretical predictions of negative refraction and realization of materials that exhibit such behavior has been overcome. A number of pioneering theoretical studies [5-7] proposed ways to realize these unusual properties in functionally designed and built materials, and experiments subsequently confirmed those predictions [8-10]. The design and production of NIMs have experienced rapid progress during  the past decade, especially in the field of optics, where numerous applications were found for utilizing unique properties, such as inverse Snell’s law, inverse Doppler shift, backward Cerenkov radiation, etc [11-13]. Furthermore, novel designs have provided NIMs that exhibit negative refractive index at near-infrared and optical frequencies [4,14-16].  

Another way to obtain negative refractive index in a given material is to introduce anisotropy in the system, keeping the resonance feature in only one of the constitutive parameters, e.g. 
[image: image3.wmf]e

 [17]. Based on this concept, one class of SN NIMs named semiconductor metamaterials, has experienced a significant progress in past few years [18,19]. These artificial materials represent anisotropic layered semiconductor structures exhibiting negative refractive index properties in a specified range of frequencies. Such a development has facilitated the fabrication of metamaterials with reduced losses.

As far as quantum mechanics is concerned, photons and electrons can be treated analogously and exhibit many similar characteristics. Similarities in their behavior provide numerous opportunities for studying interesting electromagnetic effects that also occur in quantum mechanics [20]. As a consequence of this correspondence, the concept of quantum tunneling can be used for description of an EM wave encountering the obstacle with lower refractive index than the index of surrounding medium. One of the quantities that describes the tunneling phenomenon is the tunneling time. The debate about the most appropriate definitions of tunneling times has been on for many years. Generally, the dwell time and the group delay, have been accepted as the most accurate [21]. The dwell time is related to the propagation of electromagnetic energy through the barrier, while the group delay refers to the wave phase propagation. The relationship between these times was first derived by Winful. Assuming the obstacle made of a nonmagnetic material (
[image: image4.wmf]1
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) with a positive index of refraction, he expressed the group delay as the sum of the dwell time and a term called the self-interference time [22,23], which represents the time that a wave packet spends in front of the obstacle interfering with its reflected part. This time is nonzero only in case of dispersive background medium. Recently, more general relations between the tunneling times have been calculated for different types of isotropic NIMs, such as linear absorptive dispersive [24,25], nonlinear non-absorptive non-dispersive [26] and nonlinear absorptive dispersive NIMs [27]. The impact of the Goos-Hänchen shift on these times has been calculated as well [28,29].

Relying on the design of the abovementioned anisotropic layered structure, we have derived suitable expressions for tunneling times in that type of media. Corresponding numerical results, obtained by using semiconductor NIM parameters provided in [19], indicate strong impact of anisotropy on the tunneling of EM wave through such a structure.

2. Theoretical considerations
The model includes a non-magnetic obstacle (
[image: image5.wmf]1
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) made of a large number of alternately placed layers of two different semiconductors (both linear, absorptive and dispersive), so that the whole structure exhibits anisotropy via the effective permittivity 
[image: image6.wmf]e

. The obstacle is placed inside the waveguide with given constitutive parameters: permittivity 
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 and permeability 
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), as depicted in Fig. 1. Incident planar wave is TM polarized. 
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Figure 1. The model of anisotropic obstacle with thickness L, placed inside a planar waveguide. x is the propagation axis, while 
[image: image11.wmf]q

 stands for the incident angle.

The permittivity tensor for this structure is given by the following expression:
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where 
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 and 
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 represent the permittivity for orthogonal and parallel polarization, respectively, and 
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 and 
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 stand for the permittivities of the two types of semiconductors which constitute the structure. Relations for permittivity of each layer can be expressed by the Drude model:

	
[image: image19.wmf]2

1(2)

1(2)1(2)

2

1(2)

1

p

e

i

w

ee

ww

¥

æö

=-

ç÷

ç÷

+G

èø

.
	(3)


Here, 
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 are the semiconductors’ background permittivities, 
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 are the plasma frequencies, while 
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 stand for the damping frequencies of these layers. For simplicity, we assume 
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. Furthermore, 
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 is the incident EM wave frequency. The analysis takes into consideration only non-magnetic materials, i.e. permeabilities of the obstacle and the surrounding waveguide are equal to 1 (
[image: image26.wmf]m

=1 and 
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=1). As shown in [18], the presented system is characterized by negative index of refraction when 
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 in a certain range of frequencies. The anisotropy of the system affects only the propagation of TM modes, since boundary conditions imply negative refraction only in this case.

In isotropic media, the negative refractive index of the obstacle causes the directions of energy flow and the phase velocity, i.e. the Poynting and the wave vector respectively, to be opposite [16]. However, both vectors refract negatively. In an anisotropic medium the situation is different. Due to the anisotropy of the material, the Poynting vector, which points in the direction of the energy flow, and the wave vector, directed perpendicularly to the wave front, are usually non-parallel. As the geometry of the system implies solely the conservation of tangential components of the wave vector at an interface of two layers, the travelling wave can experience positive refraction with respect to the wave vector and negative refraction with respect to the Poynting vector [30]. 

Therefore, the expression for the effective refractive index of Poynting vector in anisotropic structure presented in [19] is given by:
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This expression describes the refraction of the Poynting vector at the boundary between the isotropic and the anisotropic medium and is valid for structures with low losses, as indicated in [19]. If we observe an anisotropic structure with non-negligible absorption, the following expression for the effective refractive index can be obtained (the derivation is given in the Appendix):
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where:
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Here, 
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, while the parameter 
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 is derived according to the Snell’s law for anisotropic medium:
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The parameter 
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 represents the x- component of the transmitted wave vector, while 
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 and 
[image: image43.wmf]q

 stand for the wave vector in vacuum and the incident angle, respectively. Note that the negative refraction of the Poynting vector occurs only when the expression in Equation (5) has a negative value, i.e. when 
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. In the limiting case of low material absorption,
[image: image45.wmf]1

W=

, 
[image: image46.wmf]'

ee

^^

=

, 
[image: image47.wmf]'

||||

ee

=

 and Equation (5)  reduces to Equation (4).  

2.1.1. Tunneling times definitions

The dwell time is defined as the time spent by a wave packet in a given region of space [22,31,32]:
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where 
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 stands for the stored EM energy inside the obstacle and 
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, SCS is the cross-section and 
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is the incident magnetic field amplitude. 

In order to calculate the stored EM energy, we start from the Helmholtz equation for anisotropic media:
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and apply the Equivalent Circuit (EC) method [33], which is based on analogy between electric energy density in the material and the work done by the corresponding (analogous) electrical circuit. Here, 
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 is the y component of the magnetic field inside the obstacle. In addition, 
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is the propagation constant and 
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 is the obstacle length. Another way of calculating the stored EM energy is based on determining the EM energy density inside the obstacle as described in [34]. However the energy density (ED) method offers exact solutions only in cases when it is possible to determine all losses in the material, as for instance in structures whose permittivity and permeability are described by the Lorentz and the Drude model, respectively [35,36]. If these parameters are arbitrarily complex functions, it is usually not possible to derive the exact expression for EM energy density, primarily due to impossibility of separating the contributions which are related to losses in the medium, from those that are related to the time derivative of EM energy density. Therefore, to avoid these problems and in order to obtain accurate results, we opted for the EC method. 

The EM energy density can be represented as a sum of two contributions, one originating from the electric field and the second one originating from the magnetic field. Since our model describes a nonmagnetic obstacle, the magnetic part of the EM magnetic energy density is equal to [34]:  
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Starting from the expression for the work per unit volume (i.e., energy density), necessary for establishing the electric field E in an isotropic media with permittivity 
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, we get [33]:
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where D represents the corresponding electric displacement field.  Similarly, the work done by electrical circuit equals:

	
[image: image60.wmf]ec

tt

q

WVIdtVdt

t

¶

==

¶

òò

,
	(12)


where V is the electrical potential difference between two ends of a circuit, while 
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=¶¶

 represents the current of a branch of the circuit. In case of a circuit with linear electric response, expression for the electric charge reads:
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Here, 
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Schematic of the equivalent circuit of the permittivity of parallel polarization 
[image: image71.wmf]||

e

 in a semiconductor metamaterial is depicted in Fig. 2.
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Figure 2. Schematic of the equivalent circuit of 
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 in a semiconductor metamaterial.

In the direction of the EM field flow, the permittivity of the structure reads:
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Based on the above analysis, it is easy to conclude that the equivalent circuit of this material can be represented by the serial connection of two RLC circuits shown in Fig. 2. By calculating the work done by this electric circuit from Fig. 2, the expression for the electric energy density for normal polarization is derived as:
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Using the similar procedure, the expression for the electric energy density for parallel polarization reads:
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where
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By adding Equations (10), (17) and (18), and integrating spatially, we arrive to a relation for the stored electromagnetic energy density in the obstacle
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where:
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Here, the following substitutions have been introduced:  
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Finally, the expression for the dwell time in a semiconductor metamaterial reads: 
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where H0 stands for the incident magnetic field strength.  Parameters related to the corresponding wave vectors are given by: 
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On the other hand, the group delay can be determined from the frequency derivative of the transmission phase shift, i.e.:
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where 
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 stands for the phase of the transmitted wave.

With the standard procedure of subtracting the conjugate of the Helmholtz equation multiplied by 
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 from the derivative of the Helmholtz equation, with respect to 
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, and integrating this expression along the obstacle, the integral in Equation (23) can be derived as a function of the group delay. Now, the relationship between the tunneling times, the group delay and the dwell time, reads:
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where
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As shown in Equation (25), the group delay can be represented as a sum of several contributions, one of which is the dwell time. These contributions are consequences of:

1) interference of the incident wave with its reflected part in front of the obstacle, named the self-interference time:
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2) the absorptive nature of the obstacle:
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and

3) the difference in permittivities between the obstacle and the surrounding waveguide:
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The latter has non-zero value only if the condition 
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3. Numerical results

Numerical calculations were carried out for three different structures, two of which are anisotropic semiconductor metamaterials, while the last one represents the isotropic NIM. 

In the first example, the structure from Fig. 1 is composed of a large number of alternately placed absorptive layers of two differently doped In0.53Ga0.47As samples. The doping density of even layers is fixed to 
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 Figure 3. (a) The dwell time and (b) the group delay vs. incident field frequency in anisotropic media, for
 different doping densities of odd layers 
(the arrow depicts increasing doping density).

As the possibility to obtain a negative index of refraction is one of the key features of metamaterials, and given that the majority of quantities analyzed in this paper exhibit dramatic changes in the frequency region where the refractive index is indeed negative, we have paid particular attention to such regions and their boundaries. 

Fig. 3 depicts the dependence of tunneling times on incident field frequency for different doping densities. It can be seen that the anisotropy of the obstacle causes the emergence of two peaks of dwell time, i.e. the peaks are considered to be a consequence of two plasma resonance frequencies of the layers. The increase of odd layers' doping density intensifies and shifts the regular dwell time peak, which is the consequence of the absorption of the obstacle, toward higher frequencies. The second peak of the dwell time corresponds in 
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 position to the peaks of absorption and the group delay in the structure. In case of isotropic medium only one peak exists, which is depicted by solid black line. While the dwell time has local maxima at the boundary frequencies of the frequency ranges when the effective refractive index is negative, the group delay reaches its minima. With the decrease of doping density, the group delay becomes smaller and even negative at its first local minimum, meaning that in a narrow frequency region both the group velocity and the phase velocity become negative. This phenomenon indicates that the output wave leaves the obstacle prior than the input wave enters [37]. On the other hand, for doping densities 
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Figure 4. The real part of effective index of refraction vs. incident field frequency. For low frequencies, effective refractive index is a pure imaginary quantity.

The second investigated structure is made of alternately placed layers of In0.53Ga0.47As (in Fig. 1 material with permittivity 
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) and Al0.48Ga0.52As (in Fig. 1 material with permittivity 
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). This semiconductor metamaterial is developed by Hoffman [19] and exhibits negative index of refraction in the infrared frequency domain. In order to ensure plasma resonance for free carriers the layers of InGaAs are uniformly doped (
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), while the layers of AlGaAs remain undoped, which leaves them non-dispersive and non-absorptive. The parameters of these materials are: 
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Figure 5. Dependence of (a) absorption (b) dwell time and (c) group delay on the wavelength of incident EM wave for different angles of incidence. Vertical black lines indicate the boundaries of the area of negative refractive index for the anisotropic obstacle, for TM polarized EM waves.

Numerical results obtained for the quantities of interest are given in Fig. 5. As shown in Fig. 5b, which describes the dependence of the dwell time on the wavelength of incident wave 
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, the dwell time exhibits small oscillations for the incident wavelengths lower than 8 μm. This oscillating behavior arises from the arrangement of the entire system, since in this interval of incident wavelengths the obstacle behaves like a Bragg grating, as the period of the observed structure is comparable with 
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. For higher incident wavelengths (
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8 μm) the oscillations vanish. The angle of incident wave also affects the behavior of the dwell time. The increase of incident angle causes the decrease in oscillations. The interesting feature of the dwell time is that, for non-zero incident angles, it reaches a maximum at frequency 
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, for which the index of refraction becomes negative.

On the other hand, the absorption (Fig. 5a) peaks at the second boundary of the interval of negative index of refraction (158.7 THz) for all incident angles. Similar behavior is observed for the group delay, which can reach even negative values at this frequency for certain incident angles (Fig. 5c). 

The peak position frequency mismatch between the group delay and the dwell time has not been evidenced so far in the linear media, and is a direct consequence of anisotropy. This difference in peak position frequencies can be observed between the absorption and the dwell time, as well. Only in the case of zero angle of incidence (blue solid line) both tunneling times, the dwell time and the group delay, and the absorption have maximum values at the second boundary of the frequency interval for which the structure exhibits negative refractive index.  

As already mentioned, in case of isotropic media, negative refractive index can be achieved only if the obstacle has resonances in both of constitutive parameters, i.e. in 
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. Therefore, the permeability of such an obstacle can be described as [24]:
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where 
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 is the resonance frequency of the magnetic dipole oscillators, F is a measure of the strength of interaction between the oscillators and the magnetic field and 
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stands for the damping frequency for the magnetic field. The permittivity of the obstacle is expressed by the Drude model.

The third analyzed structure is a magnetic obstacle, whose parameters are [34]: 
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Figure 6. Dependence of the real part of refractive index (red solid line), the real part of permittivity (blue dashed line) and the real part of permeability (grey dashed line) of isotropic metamaterial on incident wave frequency.

In this case, the refractive index of the obstacle is calculated from an expression 
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, which implies that for all frequencies the refractive index of isotropic obstacle can be represented by 
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. Consequently, it can be shown that the sign of the real part of the refractive index is directly proportional to the sign of the expression 
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Here, two frequency regions in which the material has negative index of refraction can be distinguished. The green one corresponds to the frequency region in which only the real part of permittivity is negative, while the permeability remains positive. On the other hand, for frequencies in the grey region (4 GHz
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6 GHz), both 
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have negative values, and in this frequency interval the obstacle behaves as a DN NIM.  

Fig. 7 illustrates the dependences of the absorption, the dwell time and the group delay on incident field frequency for three different incident angles. For angles 
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 greater than 
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, the negative Goos-Hänchen shift occurs [38], hence they are not considered here. From Fig. 7a and Fig. 7b, it is evident that the absorption and the dwell time have a similar profile, in contrast to the group delay. Both the absorption and the dwell time reach local maxima at the boundary frequencies of the interval for which the obstacle behaves as DN NIM (grey area in Fig. 6). Unlike the situation in an anisotropic obstacle, the peak position frequencies of absorption and the dwell time match. On the other hand, the group delay has local minima at these frequencies, and, as in the case of anisotropic medium, it can reach negative value in a narrow frequency range for nonzero incident angles.  For zero incident angle, the peaks positioned at 
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Figure 7. Dependence of (a) the absorption (b) the dwell time and (c) the group delay on the incident field frequency for different angles of incidence. Green area indicates the frequency region for which the isotropic obstacle possesses negative refractive index.

4.    Conclusions

In this paper, the influence of properties of two types of anisotropic media on tunneling times has been investigated and compared to the case of isotropic materials. In an isotropic case, the positions of peaks of absorption and the dwell time show a significant dependence on the angle of incidence 
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, and occur at almost matching frequencies regardless of the value of 
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. On the other hand, for anisotropic materials the frequency positions of the peaks are independent of 
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, but the peak of absorption is found at the lower boundary of the frequency range where the refractive index is negative, while the peaks of the dwell time emerge at the upper boundary of this range. Furthermore, the peaks of A and 
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 for the isotropic case have a tendency to first decrease and then increase with 
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, while for the anisotropic case they show a monotonous increase with rising 
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 values. Finally, by enhancing the level of anisotropy it is possible to increase both 
[image: image186.wmf]d

t

 and 
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, in particular, at a certain level of anisotropy 
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 becomes positive for all frequencies. Anisotropic materials offer the possibility of tuning the output properties (in our case, the tunneling times) in quite a wide range, by changing the doping profile or selecting different semiconductor materials combinations.  
Appendix

The Poynting vector for the observed structure is equal to:
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From Maxwell’s equations it follows: 
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where 
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 represents the z-component of the transmitted wave vector.  Inserting Equations (A2) into Equation (A1), and neglecting the imaginary parts, the Poynting vector in an anisotropic structure reads (Fig. 8):

	
[image: image193.wmf](

)

2

2

0

'

||0

1

Re

2

xt

z

txz

HR

k

k

Sii

eew

e

^

-

éù

æö

=+

êú

ç÷

ç÷

êú

èø

ëû

r

rr

%

, 


[image: image194.wmf]||

'2

||

||

Re()

1

e

e

e

^

^

^

=

%

.
	(A3)


Analogously, the Poynting vector of the incident wave is equal to:
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Figure 8. Schematic representation of the Poynting vector refraction. Sr and 
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 denote the Poynting vector of reflected wave and the reflected angle, respectively. 

From the Snell’s law, effective index of refraction reads:
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where 
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represents the refraction angle. From Equations (A3) and (A4) it follows:
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Adopting the identity: 
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The dispersion relations for the isotropic (surrounding waveguide) and the anisotropic (semiconductor metamaterial) medium are:
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respectively. From Equations (A8) and (A9) we obtain:
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Finally, by inserting Equations (A7), (A10) and (A11) in Equation (A5), we arrive to the expression for effective refractive index (5).
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