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Abstract

Novel concepts of nonmagnetic nonlinear-optical (NLO)
photonic metamaterials (MMs) are proposed. They concern
with coherent NLO energy exchange between ordinary and
backward waves (BWs) through the frequency-conversion
processes. Two different classes of materials which support
BWs are considered: crystals that support optical phonons
with negative group velocity and MMs with specially engi-
neered spatial dispersion. The possibility to replace plas-
monic NLO MMs enabling magnetic response at optical
frequencies, which are very challenging to engineer, by the
ordinary readily available crystals, are discussed. The pos-
sibility to mimic extraordinary NLO frequency-conversion
propagation processes attributed to negative-index MMs is
shown in some of such crystals, if optical phonons with
negative group velocity and a proper phase-matching ge-
ometry are implemented. Here, optical phonons are used as
one of the coupled counterparts instead of backward elec-
tromagnetic wave (BEMWs). The appearance of BEMWs
in metaslabs made of carbon nanotubes, the possibilities
and extraordinary properties of BW second harmonic gen-
eration in such a MM is another option of nonmagnetic
NIMs which is described too. The possibility of creation
of a family of unique BW photonic devices is discussed.

1. Introduction

Optical NIMs form a novel class of electromagnetic me-
dia that promises revolutionary breakthroughs in photon-
ics. The possibilities of such breakthroughs originate from
backwardness, the extraordinary property that electromag-
netic waves acquire in NIMs. Unlike ordinary, positive-
index materials, the energy flowS and the wave-vectork
are counter-directed in NIMs. This determines their unique
linear and NLO propagation properties. Usually, NIMs
are nanostructured metal-insulator composites comprised
by the nanoscopic metal reesonators that enable magnetic
response at optical frequencies. Extraordinary features of
coherent NLO energy conversion processes in NIMs that
stem from wave-mixing of ordinary and BEMWs and the
possibilities to apply them for compensating the outlined
losses have been reviewed in [1,2]. A remarkable feature is

distributed feedback behavior which allows for sharp res-
onance concentration of generated fields in a microscopic
zones and great increase of the conversion efficiency. Es-
sentially different properties of three-wave mixing (TWM)
and second harmonic generation (SHG) have been shown.

While the physics and applications of NIM are being
explored world-wide at a rapid pace, current mainstream
focuses on fabrication of specially shaped nanostructures
which enable negative optical magnetism. It is challeng-
ing task that relies on sophisticated methods of nanotech-
nology. Engineering of a strong fast quadratic and cubic
NLO response by such mesoatoms also presents a chal-
lenging goal not yet achieved. This paper considers al-
ternative possibilities to advance the state of the art of the
nonlinear photonic materials through the development of
novel paradigms for quantum engineering of coherent non-
linear NIM. Two approaches are discussed. One grounds
itself on replacing one of the coupled EM waves by the
negative-dispersive phonons which is possible by making
use of readily available dielectric crystals. The other op-
tion considers metamaterials where backwardness of one
of the coupled propagating EM waves originates from de-
liberately engineered spatial dispersion of the nanoscopic
metamaterial building blocks. None of such constituents
itself must possess nanoresonator properties providing neg-
ative optical magnetism.

2. Enhancing coherent energy transfer
between electromagnetic waves through

backward optical phonons

Extraordinary features of coherent NLO energy conver-
sion processes in NIM that stem from wave-mixing of
ordinary and BEMW and the possibilities to apply them
for compensating the outlined losses have been shown in
[6–15]. Essentially different properties of three-wave mix-
ing (TWM) and four-wave mixing (FWM) processes on one
hand and second harmonic (SHG) and third harmonic gen-
eration (THG) have been revealed in [1–6, 16]. Ultimately,
NLO with BW enables a great enhancement of energy-
conversion rate at the otherwise equal nonlinearities and
intensities of input waves. Herein, we propose fundamen-



tally different scheme of TWM of ordinary and backward
waves (BW). It builds on the stimulated Raman scattering
(SRS) where two ordinary EM waves excite backward elas-
tic vibrational wave in a crystal, which results in TWM.
The possibility of such BWs was predicted by L. I. Man-
delstam in 1945 [17], who also had pointed out that nega-
tive refraction is a general property of the BWs. The idea
underlying the proposed concept and its basic justification
is described below (see, also [18]). The goal is to show the
possibility to replace the NI plasmonic composites, which
are challenging to fabricate, with readily available ordinary
crystals, some of which have been already extensively stud-
ied, and thus to mimic the unparallel properties of coherent
NLO energy exchange between the ordinary and BW.

The basic idea is as follows. The dispersion curveω(k)
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Figure 1: Negative dispersion of optical phonons and two
phase matching options for short- and long-wave vibra-
tions: (a) – co-propagating, (b) – contra-propagating funda-
mental, control, and Stokes, signal, waves. Insets: relative
directions of the energy flows and the wave-vectors.

of phonons in the crystals containing more than one atom
per unit cell has two branches: acoustic and optical. For the
optical branch, the dispersion is negative in the range from
zero to the boundary of the first Brillouin’s zone (Fig. 1).
Hence, the group velocity of optical phonons,v

gr
v , is an-

tiparallel with respect to its wave-vector,kph
v , and phase

velocity,vph
v , because

S = vgU, vg = (k/k)[∂ω/∂k], ∂ω(k)/∂k < 0. (1)

Optical vibrations can be excited by the light waves due
to the two-photon (Raman) scattering. The latter gives
the ground to consider such a crystal as the analog of the
medium with negative refractive index at the phonon fre-
quency and to examine the processes of parametric interac-
tion of three waves, two of which are ordinary EM waves
and the third is the wave of elastic vibrations with the di-
rections of the energy flow and of the wave-vector opposite
to each other. Here, we will consider only lowest-order Ra-
man process [19,20]. The waves are given by the equations

El,s = (1/2)εl,s(z, t)e
ikl,sz−iωl,st + c.c., (2)

Qv = (1/2)Q(z, t)eikvz−iωvt + c.c. (3)

Here,εl,s, Q, ωl,s,v andkl,s,v are the amplitudes, frequen-
cies and wave-vectors of the fundamental, Stokes and vi-

brational waves;Qv(z, t) =
√
ρx(z, t); x is displacement

of the vibrating particles,ρ is the medium density. With
account for the energy and momentum conservation,

ωl = ωs + ωv (kv) , ~kl = ~ks (ωs) + ~kv,

one obtains the following equations for the slowly varying
amplitudes in the approximation of the of first order ofQ in
the polarization expansion:
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Here,vgrl,s,v are the projections of the group velocities of the
fundamental, Stokes and vibration waves on the z-axis,N
is the number density of the vibrating molecules,α is the
molecule polarizability,τ is phonon lifetime,ω0 is phonon
frequency forkv = 0. The dispersionωv(kv) can be ap-
proximated as [19]ωv =

√

ω2
0 − βk2v. Then, in the vicin-

ity of kv = 0, velocityvgrv is given by:vgrv = −βkv/ωv =
−β/vphv , wherevphv is the projection of the phase velocity
of the vibrational wave on the z-axis andβ is the dispersion
parameter for the given crystal.

For the sake of clarity, the continuous wave case and
the approximation of the constant fieldEl is considered.
The latter is appropriate for the relatively week Stokes and
vibrational waves. Then Eqs. (5-6) take the form:

dQ/dz = −ig1ε
∗
s −Q/(τvgrv ), dεs/dz = ig2Q

∗. (7)

Here,

g1 = −N(∂α/∂Q)εl/(4ωvv
gr
v ), (8)

g2 = (πω2
s/ksc

2)N(∂α/∂Q)εl. (9)

In the case of Fig. 1(a), Eqs. (7) exhibitthree fundamen-
tal differencesas compared with TWM of co-propagating
waves in ordinary materials: an opposite sign withg1 which
stems fromvgrv < 0, an opposite sign withQ/(τvgrv ) be-
cause the phonon flow is against thez-axis, and the bound-
ary conditions forQ to be defined atz = L, i.e. at the
opposite edge of the slab as compared to that forεs. This
leads tofundamental changesin their solutions and, conse-
quently, in the spatial and output behavior of the Stokes sig-
nal. Alternatively, in the given constantεl approximation,
the equations become identical and the behavior standard
for the case of Fig. 1(b). The solution to Eqs. (7) is found
in the form:

Q∗ = A1e
β1z

′

+A2e
β2z

′

, εs = A3e
β1z

′

+A4e
β2z

′

,
(10)

whereβ1,2 = 1 ∓ iR, R =
√

g∗1g2l
2
p − 1, z′ = z/lp,

lp = −2vgrv τ . The amplitudesA1−4 and their relation-
ships are determined by the boundary conditions. Trans-
mission factors for co-propagating,T⇈

s (z), and counter-
propagating (g2 < 0), T ↑↓

s (z), fundamental and Stokes
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waves are found as

T⇈
s =
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, (12)

whereL′ = L/lp, T⇈
s = |εs(z)/εs(z = 0)|2 andT ↑↓

s =

|εs(z)/εs(z = L)|2.
Equations (11) and (12) display spatial distributions

which arecontrolledby the fieldεl and are in a strict con-
trast to each other. It is explicitly seen for the ultimate loss-
free case (lp → ∞). Then

T⇈
s (z = L) → 1/ cos2(gL), (13)

T ↑↓
s (z = 0) → [exp(2|g|L)]/4, (14)

where g =
√

g∗1g2. Equation (11) depicts a series of
sharp giant resonance enhancements of the output signal
for g → (2j + 1)π/2L, (j = 0, 1, 2...). On the contrary,
the coupling scheme of Fig. 1(b) is equivalent to scatter-
ing on acoustic phonons and on optical phonons with posi-
tive group velocity. Correspondingly, Eq. (12) displays typ-
ical exponential growth with no resonances with respect
to intensity of the fundamental control field. In general
case, the denominator in Eq. (11) can be turned to zero if
g2l2p > 1. The threshold value of intensity of the control

field is Imin =
(

cnsλs0ωv/8π
3lpτ

)

|N∂α/∂Q|−2, where
λs0 is Stokes wavelength in the vacuum.

For a given intensity of the control fieldIl > Imin,
the crystal thickness corresponding to the first resonance
is L′ =

[

π − tan−1 (R)
]

/R. Figure 2(a) depicts trans-
mission in the vicinity of the first “geometrical” resonance.
In the resonance,T⇈

s → ∞, which is due to the approx-
imation of constant control field. Conversion of the con-
trol field to the Stokes one and excited molecule vibrations
would lead to saturation of the control field which limits the
maximum achievable amplification. Strong amplification in
the maximums indicates the possibility of self-oscillations
and thus creation ofmirrorlessoptical parametrical oscil-
lator with unparalleled properties. In the case of Fig. 1(b),
ks < 0 and the denominator in Eq. (12) cannot equal to
zero. This results in exponential spatial dependence with
no resonances depicted in Fig. 2(b) (the red, dashed line).
Figure 2(b) shows that, in the vicinity of the resonance,
three-wave coupling of waves with co-directed wave vec-
tors and contra-directed energy flows of vibrational and
Stokes waves provides formuch higherefficiency of coher-
ent energy conversion than in the standard schemes. Fig-
ures 2(a,b) indicate the possibility tofit in the effective con-
version length within the crystal of a given thickness and to
significantlyconcentratethe generated Stokes field nearby
its output facet. Such atypical extraordinary behavior in
readily available crystals may find exciting applications.

Such unusual properties are in a striking contrast with
those attributed to commonly known counterparts, the crys-
tals where only phonons with positive group velocity ex-
ist [19, 20]. Such NLO properties are also different from
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Figure 2: (a) Transmission of the Stokes waveT⇈
s (z = L)

vs intensity of the fundamental control field in the vicinity
of first “geometrical” resonance (co-propagatingEl andEs

geometry). Such extraordinary resonance appears because
of backwardness of the coupled vibration wave. (b) Com-
parison of the output intensities of the Stokes wave vs in-
tensity of the control field for co- (the blue, solid line) and
contra-propagating (the red, dashed line) fundamental (con-
trol) and signal (Stokes) waves.

those inherent in the phase-matched mixing of EM and
acoustic waves for the case where the latter has energy flux
and wave vector directed against EM waves [21]. The elab-
oration of the proposed concept will alow to utilize the re-
vealed properties for creation of a family of unique pho-
tonic devices such as optical switches, filters, amplifiers and
cavity-free optical parametric oscillators based on ordinary
Raman crystals without the requirement of its periodically
poling at the nanoscale [22] (and references therein).

Estimations made for the model, which is characteris-
tic for the diamond crystal,ωv = 1332 cm−1 and vibra-
tional transition width(cτ)−1 = 1.56 cm−1 [23–25], have
shown that the required excitation intensities are above the
typical crystal breakdown threshold in the continuous wave
regime. However, the cross-section of the Raman scattering
is inverse proportional to the squared frequency offset from
the intermediate single-photon resonance. Therefore, the
threshold intensityImin can be reduced by seven to eight
orders compared to its off-resonance values by approach-
ing such a resonance. The breakdown threshold can be
increased and required intensity reduced for pulsed lasers
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with the pulse length shorter than the phonon relaxation
rate.

3. Backward-waves which do not require
optical magnetism and second harmonic

generation

Herewith, we suggest more general approach to generating
backwardelectromagneticwaves, which is free from the
limitations inherent to current mainstream approach. The
latter relies on plasmonic nanoresonators which ensure neg-
ative optical magnetism. Basic idea is as follows. In a loss-
free isotropic medium, energy fluxS is directed along the
group velocityvg:

S = vgU, vg = gradkω(k). (15)

Here,U is energy density attributed to EMW. It is seen
that the group velocity may become directedagainst the
wavevector depending on sign of dispersion∂ω/∂k. Simi-
lar property is discussed in the preceding section, however
applied toelasticvibrational waves. Such an approach to
engineering of BEMW discussed, e.g., in [26, 27] has not
attracted significant research efforts so far. The search and
elaboration of the particular MM with spatial dispersions
that enables BEMW remains the topical problems of the
day. Appearance of BEM modes in nanoarrays and lay-
ered structures has been shown recently in Ref. [28–30].
Obviously, many other options should have existed. Each
of them leaves open questions, both fundamental and spe-
cific to each potential material and application. Below, we
propose and give a preliminary analysis pertinent to one of
such option that seems promising in the context of nonlin-
ear propagation coherent energy conversion processes, such
as SHG of BEW.

Figure 3(a) depicts a periodic array of carbon nanotubes
(CNT) vertically standing on the surface of a perfect con-
ductor (PEC) with the CNT ends open to air, which can be
seen as perfect magnetic conductor (PMC). Such CNT ar-
rays form finite-thickness slabs which have been fabricated
by many research groups and used as field emitters, biosen-
sors, antennas and in nanoelectronics. As shown in Ref.
[31], EM waves travelling through such CNT “nanoforest,”
along x or y directions, posses a hyperbolic dispersion and
relatively low losses in the THz and mid-IR ranges. One
of the most important consequences from the hyperbolic-
type dispersion law is the possibility for propagation of both
forwardand backwardEM waves. Consider EMW propa-
gating along the x-axis. In such a one-dimensional case,
Eq. 15 reads asvgr = ∂ω/∂kx. We also introduce group
ngr = c/vg and phasenph = c/vph slow-wave factors.
The latter one is refractive index. For the given case of sur-
face waves propagating in the slab of CNTs with open ends,
whose fields attenuate in air, the dispersion is given by the
equation [32]:

tan (kzh) =
√

k2x − k2/kz. (16)

Such a dependence can be understood from considering a
planar waveguide formed by perfect PEC and PMC planes
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Figure 3: (a) Geometry of free-standing CNTs. (b) Dis-
persion – the frequency vs slow-wave factor for the slab of
CNTs with open ends. (c) Group delay factor vs the phase
velocity slow-wave factor for the same modes as in panel
(a). Black (flat) curve corresponds to the high-frequency
mode, blue curve to the low-frequency mode. The tip of
blue curve is cut. Its maximum corresponds to the stop-
light regime.

and tampered with a CNT array. The array axis is orthog-
onal to the walls of the waveguide. Then, the propagation
constant along the waveguide is given by:

k⊥ =
√

ǫzz [k2 − (mπ/2h)2], (17)

wherem is a positive integer,h is the height of the waveg-
uide (CNT) andk is the wavenumber in free space [33]. If
ǫzz < 0, BW propagation is allowed whenk < mπ/2h
and forbidden fork > mπ/2h. The relation between the
wavevector componentkx and wavenumberk is:

k2x = [(k2 − k2p)(k
2 − k2z)]/[k

2], (18)

wherekz = mπ/(2h), m is the integer determining a num-
ber of field variations along CNT,kp is plasma wavevec-
tor. One can show thatdk2⊥/dk

2 < 0, if kz/k > 1 and
kp/k > 1.
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Numerical analysis of Eq. (16) is depicted in Fig. 3(b)
for the case of CNT radiusr = 0.82 nm, the lattice period
d = 15 nm and EM modes withm = 1 andm = 3. The
appearance of positive dispersion for small slow-wave fac-
tors is caused by interaction of BW in the CNT slab with
the plane wave in air. Indeed, coexistence of the positive
(ascending dependence) and negative (descending depen-
dence) dispersion for different frequencies proves that such
a metamaterial supports both ordinary andbackwardEMW.
It also proves that resonant plasmonic structures, like split-
ring resonators, exhibiting negativeǫ andµ arenot the nec-
essary requirement for the realization of BW regime in mid-
IR range. The possibility of considerable increased band-
width of BEMW compared to most plasmonic MM made
of nanoscopic resonators is seen that gives the ground to
consider CNT arrays as a promisingperfect backward-wave
metamaterial. The slow-wave factor for both modes is
shown in Fig. 3(c). The magnitude ofngr goes to infin-
ity at nph ≈ 1.85, which indicates the stop-light regime
for the low-frequency mode. Particularly, Fig. 3(cb) shows
the possibility ofphase matchedSHG. The possibilities of
independent quantum engineering of corresponding nonlin-
earities were shown in [1,11,13–15]. The attractive feature
of given approach is the feasibility of tailoring the outlined
properties.

4. Conclusions

While the physics and applications of NIM are being ex-
plored world-wide at a rapid pace, current mainstream
focuses on fabrication of specially shaped nanostructures
which enable negative optical magnetism. It is challenging
task that relies on sophisticated methods of nanotechnol-
ogy. Engineering a strong fast quadratic and cubic NLO re-
sponse by such mesoatoms also presents a challenging goal
not yet achieved. This paper proposes to advance the state
of the art of the nonlinear photonic materials through de-
velopment of novel paradigms for enhanced coherent non-
linear coupling of EMW which is accompanied by effi-
cient frequency conversion. Such an approach has become
achievable only recently owing to fast developments in the
fundamental electromagnetics, nanophotonics and in nan-
otechnology. It also paves a way to realization of exotic co-
herent NLO processes in some of readily available crystals.
Among the potential applications are microscopic sensors,
all-optical switching elements, frequency mixers, filters,
amplifiers, and sources of entangled counter-propagating
photons.
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