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Abstract 

We show that the metal nanoparticle chains 

supporting localized surface plasmon resonance can behave 

as transmission Bragg gratings on a dielectric waveguide. 

An analytical model is developed to interpret the 

experimental results.   

1. Introduction 

Metallic nanoparticles (MNP) supporting localized 

surface plasmons (LSPs) can confine light at sub-wavelength 

scales [1] with many potential applications in plasmonic 

nanolasers [2], SERS [3,4], bio-sensors [5], waveguiding [6] 

– [8]. To date, most of the studies conducted on the LSPs 

have been performed using free-space or near-field 

configurations, where MNP chains can incidentally behave 

as grating couplers. For instance, an increase in the LSP 

resonance lifetime was demonstrated by using a diffraction 

order of a MNP [9] – [11]. In 2004, Quidant et al. observed 

strong modulations in the near-field spectra of a composite 

device including MNPs with TiO2 microguide at visible 

frequency [12]. Recently Zhou et al. reported polariton 

propagation in a 2D grating of gold NPs by coupling either 

to the transverse or longitudinal resonant LSP modes [13]. 

Yet, the excitation of LSP in a truly guided configuration 

remains a crucial step towards the implementation of 

plasmonic functions in photonic integrated circuits.  

In this paper, we analyze both theoretically and 

experimentally the LSP Bragg grating (LSPBG) integrated 

in a guided wave SOI (silicon-on-insulator) configuration at 

telecom wavelengths. We show that different propagation 

regimes and transmission spectra at the waveguide output 

can be obtained depending on the position of Bragg 

frequency orders with respect to the LSP resonance. To 

investigate theoretically the behavior of such LSPBGs, we 

propose an analytical model where the MNP is described as 

a periodic modulation of the waveguide refractive index. 

Prior to this, an equivalent index of the metallic film is 

derived from the coupled dipole approximation method in 

the quasi-static approximation. Our approach is similar to 

that recently used for modeling the optical properties of 2D 

gold NP grating excited in Kretshman-Raether configuration 

[14]. The propagation in the waveguide with LSP Bragg 

grating is then described by using the coupled mode theory 

(CMT) [15-16].  

The paper is organized as follows. The analytical 

model of LSPBG is presented in the next section. The 

different LSPBG behaviors are then illustrated by varying 

the LSP resonance frequency (i.e., the size of nanoparticles) 

at a constant grating period. Next, Finite Difference Time 

Domain (FDTD) calculations are used to validate the main 

assumptions in the model. Experiments are then presented, 

and waveguide transmission measurements are compared to 

theoretical predictions. 

2. Analytical model of LSP Bragg gratings 

Fig. 1(a) show the basic scheme of a dielectric 

(SOI) waveguide with a LSP Bragg grating deposited on the 

top. The inter-particle distance d is chosen to provide at least 

one grating order within the wavelength range of interest. 

The size of the nanoparticles is chosen in such a way that the 

LSP resonance occur in the same wavelength range. One 

appropriate shape to excite the LSP resonance with a TE 

waveguide mode is the ellipsoidal nanorod with its long axis 

perpendicular to the mode of propagation (fig. 1 (b)). In 

what follows, D1 and D2 will denote the long axis and small 

axis respectively. As gold is an absorbing material, MNPs 

can actually perturb the waveguide’s refractive index in two 

ways. They not only affect the real part of the refractive 

index, but also its imaginary part. As will be seen later, this 

can lead to different LSPBG regimes depending on the 

respective positions of Bragg and LSP resonances. 

Coupled mode theory is commonly used to provide 

an analytical description of Bragg gratings [17]. However, 

LSPBG is not a standard case since both the LSP resonance 

and the Bragg resonance must be accounted for. Here, we 

make the assumption that an equivalent index of refraction 

eqn~ can be assigned to the MNP grating layer supporting 

LSP resonance. To calculate 
eqn~ each MNP is approximated 

by a point dipole, and its interaction with the underlying 

waveguide is accounted for via the image dipole formalism. 

The quasi-static approximation is then used since the inter-

particle spacing (~ 500 nm) is sufficiently long to assume 

uncoupled particles. The same approach was made for 2D 

grating of MNPs excited in the Kretshman-Raether 

configuration [14] as well as for a Bragg grating in a free 

space configuration [18].  The originality of our approach 

stems from the use of a waveguide configuration. Once 
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eqn~ is obtained, it is injected in the CMT model to calculate 

the waveguide transmission (Figure1 (c)). 

 
Figure 1: (a) Schematic view of a LSP Bragg grating on SOI 

waveguide. (b) Schematic view of a given nanoparticle. (c) 

Principle scheme for the analytical model.  Nanoparticles are 

replaced by transverse waveguide slices with an equivalent 

index
eqn~ . 

2.1. Determination of the equivalent index layer 

We consider a MNP grating on a substrate with a 

permittivity εsub and immerged in a medium having 

permittivity εext. The MNP grating layer is presently 

approximated by an equivalent medium with a dielectric 

function εeq. The term “equivalent” is preferred to 

“effective” in order not to be confused with the effective 

index of the waveguide. The macroscopic polarization P


 of 

this equivalent medium is then related to its permittivity and 

the macroscopic external field 
extE


via [19]: 

 

extexteq EP


)(0   ,                              (1)  

                         

The polarization P


is also written as the sum of the dipolar 

moments p
  of individual particles pNP


  where N is the 

number of particles per unit volume. This lead to: 
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where V is the volume and α(ω) is the polarisability of an 

individual particle 
locE


is the local field "seen" by this 

particle. In the quasi-static approximation, the polarisability 

of an ellipsoidal particle with permittivity εm and a 

depolarization factor Ls  in a medium with permittivity εext is 

defined by [20] : 
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When the local field
locE


is known, it is possible to 

determine the equivalent permittivity εeq from equation (1) 

and (2): 

 

locextextexteq EVNE


 )()( 00  .  (4) 

 
 

Figure 2: Schematic of a particle placed on a substrate and its 

image dipole. 

 

 

Actually, 
locE


can be calculated by considering the particle 

as a point dipole.  The image dipole formalism is then used 

to account for the presence of a substrate that is presently 

assumed to be isotropic and non-magnetic (fig. 2). The 

image dipole 'p


associated with the dipole 

moment p


carried by the particle at the interface between 

the substrate (εsub=3.59) and the external medium (εext=1), is 

written [21]: 
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The local field in O then results from two contributions, the 

applied external field 
extE


and the field created by the image 

dipole
imgE


: .imgextloc EEE


  The electrostatic potential 

created at any point in space is the sum of the potentials 

created by dipole p


and image dipole 'p


, respectively. 

Using the quasi-static approximation, the general expression 

of the field created by a dipole p


at a distance r (point M) in 

a medium with a dielectric εext is given by the following 

equation:  
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where urR


. , u


 is the unit vector born by OM . Using 

the general expression (6), the field created by the image 

dipole 'p


located in O’ at point O is given by: 
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Since the image dipole 'p


is oriented perpendicularly 

to OO' , then: .0''. OOp


By denoting HOO ' and 

using Eq. (5), the expression for the field 
imgE


can be re-

written as: 
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This leads to the following expression
locE


: 
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where .)(0 locext EVNP


 Let us define K as: 
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The equivalent permittivity εeq is then determined by using 

the eqs. (4), (9) and (10). After straightforward calculations, 

we obtain: 
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The expression for εeq (or rather, that of 
eqeqn ~ ) is 

then used in the coupled mode theory to account for the LSP 

resonance in the Bragg grating. Here it is worthwhile 

recalling that the “one-particle” model used to derive εeq not 

only assumes uncoupled particles, but also neglects radiation 

losses in the system. As will be seen in Section 5, this leads 

to a non-symmetric plasmon absorption line whose width is 

narrower thanthe measured line widths. In turn, basic 

mechanisms of LSP Bragg grating are correctly described.  

2.2. Coupled mode theory with LSP resonance 

In order to adapt CMT [17] to LSP Bragg gratings, 

we use the simplified scheme of a periodically structured 

waveguide shown in fig. 1(c). In waveguide regions close to 

the particles, the waveguide refractive index is taken to be 

equal to
eqn~ . In other regions, the effective index of the bare 

waveguide, 
SOIeffn = 2.32 is maintained. This implicitly 

assumes that in the waveguide regions close to the particles, 

the electromagnetic energy of the TE guided mode is almost 

totally transferred to the particles themselves. FDTD 

simulations reported in Section 4 supports this assumption. 

 The periodic modulation thus simulated along the 

waveguide simultaneously includes a “pure” refractive 

index modulation (real part of the index) and a loss 

modulation due to nanoparticles (imaginary part of the 

index). Using the general expression of complex refractive 

index for a material having a gain (or loss), 
eqn~ is written 

as:  

0

~

k
inn

eq

eqeq


      (12) 

 

where k0=2π/λ, λ is the wavelength, neq the refractive index 

and γeq the material gain (or losses if γ < 0) which is 

constant in intensity. For the sake of simplicity, we consider 

a sinusoidal modulation along the waveguide with real part 

oscillating between neffsoi and neq and the imaginary part 

oscillating between 0 and γeq/k0. For such a modulation, the 

spatial evolutions of the real and imaginary parts of the 

optical index in the propagation direction equal:  
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where the value of n0, n1, γ0 and γ1 are determined from the 

initial conditions. Setting the origin at the first particle, we 

obtain: 
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The CMT model then leads to the following coupled 

differential system [17]: 
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where A(x) and B(x) represent the propagative and contra-

propagative modes, respectively. The coupling constant, κ, 

is given by: 
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The phase mismatch 2β is given by: 

d
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The resolution of coupled differential equations (15) allows 

us to calculate the normalized transmission and reflection 

coefficients for the waveguide with LSP Bragg grating: 
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Let us recall here that the specific parameters of 

nanoparticles are included in the model via Eq. (3). In what 
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follows, the particle size is used as a variable parameter to 

investigate the different behaviors of LSP Bragg grating. 

3. LSP Bragg grating behaviors 

We consider a Bragg grating made of 50 particles with 

the Bragg resonance at λ=1500 nm. In principle, particles 

should be spaced 300 nm apart in order to operate in the first 

Bragg order. However, this would lead in turn to strong 

coupling between particles with the consequences that MNP 

chain itself would behave as a waveguide [8] and the Bragg 

grating mechanism would be strongly perturbed. For this 

reason, a 600 nm spacing is fixed between particles 

corresponding to a second-order grating. Fig. 3 shows the 

calculated waveguide transmission and reflection for LSP 

Bragg gratings with different MNP sizes. Three situations 

are found depending on the spectral position of the LSP. If 

the LSP resonance occurs at a shorter wavelength than the 

Bragg resonance (fig. 3(a)), the waveguide transmission 

exhibits a minimum at the Bragg wavelength as expected. In 

case the LSP resonance coincides with the Bragg resonance, 

the transmission dip is replaced by a small transmission 

peak. At the same time, the Bragg reflection is significantly 

attenuated (fig. 3(b)). When the plasmon resonance 

wavelength is longer than the Bragg wavelength λBragg, a 

weak but quite detectable peak appears in the transmission 

spectrum (fig. 3(c)). Calculated curves showing the real (neq) 

and imaginary (keq=γeq/k0) parts of the equivalent layer index 

(right column in fig. 3) help us to explain the different 

behaviors. For a plasmon resonance at short wavelength 

(fig. 3(a)), the real part of the refractive index dominates, 

and the device behaves as a standard Bragg grating. For a 

plasmon resonance at a longer wavelength than λBragg (fig. 

3(c)), the imaginary part of the refractive index dominates, 

and the transmission curve corresponds to a Bragg grating 

modulated by losses [17]. Fig. 3(b) represents an 

intermediate situation.  

 

Figure 3: Left column: calculated transmission and 

reflection spectra of an SOI waveguide with LSP Bragg 

grating. Right column: real (neq) and imaginary (keq) parts of 

the equivalent layer refractive index. The vertical dashed 

line shows the spectral position of the Bragg resonance. The 

long axis of gold ellipsoids is D1 = 190, 220 and 240 nm in 

a), b) and c), respectively. Their short axis and height are 

identical in the three cases: D2 = 80 nm, h = 30 nm. 

4. FDTD calculations 

 FDTD calculations were performed to validate the 

analytical model. Commercial software from Lumerical, 

FDTD Solutions was used for this purpose. As a precise 

modeling of > 25 µm long structures (50 gold nanoparticles) 

with 3 nm accuracy required time-consuming simulations, 

we therefore limited ourselves to structures comprised of 

only five nanoparticles, further referred to as “native” Bragg 

gratings. The spacing between particles was chosen to be 

500 nm, close to that measured in fabricated structures (see 

Section 5). Correspondingly, the grating second order of the 

grating was calculated to occur at λ =1325 nm. The short 

axis and the height of the gold ellipsoids were taken to be 

D2 = 80 nm and h = 30 nm in all the calculations. The 

length of the  ellipsoid axis (D1) varied from 180 to 210 nm. 

 Figure 4 shows FDTD results for a “native” Bragg 

grating comprised of five particles with D1 = 180 nm. In this 

case, the plasmon resonance occurs at a wavelength shorter 

than the Bragg resonance. In agreement with the theoretical 

predictions obtained from the analytical model (fig. 3(a)), 

the waveguide transmission exhibits a minimum at the 

Bragg wavelength while a maximum is obtained for the 

waveguide reflection (fig. 4(a)). The field maps show that 

the propagation of the TE waveguide mode is strongly 

perturbed by particles. This perturbation is stronger at 

shorter wavelengths (fig. 4(b)) than at longer wavelengths 

(fig. 4(d)). At 1326 nm, the two field maximum between 

neighboring particles (fig. 4(c)) confirms that the Bragg 

grating is operated in its second order. Interferences between 

the two counter-propagating waves are well resolved in the 

first part of the waveguide. A detailed inspection of the field 

distribution in the central part of the waveguide shows that 

the field intensity is weak below the particles while it is 

strong between particles. A very high intensity is also 

calculated in the very proximity of particles themselves 

(dotted squares in b), c) and d)). These results justify the 

approximations used for establishing the coupled mode 

equations in Section 3.                                  
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Figure 4: FDTD simulations of a “native” LSP Bragg 

grating consisting of 5 gold ellipsoids with D1=180 nm, 

D2 = 50 nm and h = 30 nm. a): waveguide transmission and 

reflection spectra calculated around the Bragg wavelength 

(~1326 nm). b), c) and d): mapping of the field intensity |E|² 

along a longitudinal waveguide cross-section for  = 1250, 

1326 and 1450 nm, respectively. White dotted squares 

indicate the positions of the particles. 

Figure 5 shows FDTD calculations for D1=190 nm. 

The plasmon resonance wavelength coincides with the 

Bragg wavelength in this case. In agreement with 

predictions from the analytical model (fig. 3(b)), a 

transmission peak is now observed at the Bragg resonance 

(fig. 5(a)). The calculated field maps (figs. 5(b, c, d)) are 

similar to those in fig. 4.  
 

 

Figure 5: Same as fig. 4 except for D1 = 190 nm 

For gold ellipsoids with a long axis D1 = 210 nm 

(fig. 6), the plasmon resonance is shifted to the long 

wavelength side of the Bragg resonance. This is again in 

agreement with the results of the analytical model 

(fig. 3(c)), the waveguide transmission spectrum exhibits a 

small peak near the Bragg resonance. The exact location of 

this peak also depends on the shape of the plasmon 

absorption curve. The calculated field maps (figs. 6(b, c, d)) 

are similar to those of fig. 4. 

 

Figure 6: Same as fig. 4 except for D1 = 210 nm. 
 

5. Experiments 

Three series of LSP Bragg gratings as schematically 

shown in fig. 1 were fabricated on single-mode silicon (Si) 

ridge waveguides having 500 × 220 nm
2
 cross-sectional 

area. All gratings were composed of 50 gold ellipsoids 

periodically spaced ~ 510 nm apart (fig. 7). The main 

difference between the three series of gratings was the size 

of ellipsoids. The long axis and short axis were respectively: 

D1 = 169 ± 5nm; D2 = 57 ± 5nm (fig. 7(a)), 

D1 = 181 ± 5nm; D2 = 50 ± 5nm (fig. 7(b)) and 

D1 = 211 ± 5nm; D2 = 59 ± 5nm (fig. 7(c)). Gold 

nanoparticles were fabricated on top of the Si waveguides 

using electron-beam lithography followed by a lift-off 
process. A 30 nm gold layer was deposited by electron-beam 

evaporation. A 1 nm titanium (Ti) adhesion layer was 

deposited prior to the deposition of gold. A Drude model 

was used to fit the ellipsometric measurements of deposited 

gold layers. Accurate dispersion data of gold obtained in this 

way were further used in the analytical model as well as in 

FDTD simulations.  

 

 

Figure 7: Scanning Electron Microscope (SEM) images of 

nanoparticles for the three series of fabricated LSP Bragg 

gratings. The particle sizes are different in the three cases. 

The waveguide transmission spectra were measured 

by injecting a polarized light to the butt facet of the Si 

waveguide using a lensed polarization maintaining fiber. A 

cw tunable laser with polarization set to TE was used as the 

light source. A × 20 objective with 0.35 numerical aperture 

was used to collect the transmitted light at the waveguide 

output. The collected light was then detected with a power 

meter. Normalization of transmission measurements was 

achieved using a reference waveguide without MNP. The 

input light was scanned in steps of 1 nm over the 1260-

1630 nm range. Figure 8 shows a comparison between 

experimental results and theoretical results from the 
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analytical model. "Noise" on the experimental curves is due 

to Fabry-Perot oscillations caused by reflections at the 

waveguide ends. For structures a) and b), the LSP resonance 

occurs at a lower wavelength than the second-order Bragg 

resonance near 1320 nm. Transmission dips are then 

experimentally observed at the Bragg resonance in 

agreement with the predictions of the analytical model 

(figs. 5(a) and (b)). For gold particles with larger size 

(fig. 8(c)), the LSP resonance occurs at a longer wavelength 

than the Bragg resonance. A weak transmission peak is 

observed in this case as in fig. 5(c). In the three cases a), b) 

and c), the plasmon linewidth is broader than predicted 

theoretically. This difference is mainly explained by the 

quasi-static approximation used in the analytical model. 

Indeed, radiative losses of metallic dipoles are neglected 

with the consequence that the calculated LSP resonance 

presents a better quality factor than the experimental one. 

On the other hand, fabrication imperfections and particle 

size dispersion tend to increase the measured LSP 

bandwidth. It is finally worthwhile noticing that Fabry-Perot 

oscillations can be used in conjunction with the Bragg 

grating resonance to produce narrow transmission peaks 

with relatively high (near 30dB) rejection ratio (fig. 8(c)). 

 
Figure 8: Comparison between experiments and theory. Left 

column: waveguide transmission spectra measured for 

fabricated LSP Bragg gratings a), b), and c). In figures a) 

and b) logarithmic scale is used for better clarity. Right 

column: theoretical calculations from the analytical model.  

6. Conclusion 

In this work we have developed the concept of 

localized surface plasmon Bragg gratings integrated on a 

dielectric waveguide. We have demonstrated both 

theoretically and experimentally that different types of 

transmission responses could be obtained depending on the 

spectral position of the LSP resonance with respect to the 

Bragg resonance. As a major result, LSP gratings can be 

operated either in the refractive index modulation regime or 

in the loss modulation regime. For a given grating period, 

the operating regime can be controlled with the size of 

metallic particles. An analytical model has been developed 

to qualitatively predict the grating behavior. The model 

predictions have been verified from FDTD simulations for 

short gratings with a small number of particles. Although no 

attempt has been presently made to optimize the LSP Bragg 

grating performances, we believe that these gratings can find 

applications in optical filtering and chemical or bio-sensing. 

Metallic losses in guided optics can be partially 

compensated for with the use of amplifier waveguide 

sections. 
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