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We apply a novel dynamic homogenization technique to determine the frequency-dependent ef-
fective permeability of split-rings arrays. The Floquet-Bloch decomposition of Maxwell equations
in this metamaterial is applied when the wavelength is much bigger than the material’s period. We
replace the inclusion with a closed ring, and numerically simulate the model by nodal finite elements
and a reasonable number of tetrahedral mesh elements. Our results show a good agreement with
an analytical permeability law for 2D structures. This work also proposes an accurate method to
model the magnetic field in the unit cell.
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I. INTRODUCTION

In naturally-occurring materials the refraction index
is always positive. However, some artificially microstruc-
tured materials can exhibit exotic properties as a nega-
tive index1,2. The research on these metamaterials, orig-
inally pioneered by Veselago3, has been growing the last
years. This interest is mainly driven by the suggested
potential applications, including the miniaturization of
electromagnetic devices4 and the realization of subwave-
length resolution lenses5,6.

A periodic artificial material constituted of conducting
inclusions distributed in a dielectric matrix could act as
a continuous medium with effective constitutive proper-
ties, at least in the long wavelength limit. For instance,
a material formed by an array of thin metallic wires can
have a plasma frequency, hence a negative permittivity,
in the microwave regime7. In the other hand, magnetic
structures with a negative permeability can be obtained
by arranging non closed metallic rings in a dielectric host
medium. These so called split ring resonators (SRR) has
been proposed to limit the absorption of the swiss-roll
structure8 and quickly become the archetypical magnetic
component in metamaterials. The majority of the im-
plemented negative index metamaterials being based on
different kinds of split-ring arrays, these inclusions ben-
efit from numerous studies to determine the resonance
frequency9,10 and the magnetic field distribution11,12.

Some methods have been proposed in order to compute
the bulk properties for the metamaterials. The retrieval
procedure13 consists in extracting the effective constitu-
tive parameters from the complex reflection and trans-
mission coefficients for a finite metamaterial’s thickness.
However, this method does not provide significant phys-
ical insight into the nature of the artificial material and
is subject to multiple branch solutions14. Despite it has
been greatly improved in several ways15, it is requiring
the full simulation of the periodic structure.

Other methods avoid the heavy computation of S-
parameters. As a matter of fact, the computation of the

effective parameters could be done with minimum cost
if we can take advantage of the structure translational
symmetry. Instead of solving the problem over the whole
structure, we would only study the symmetry cell. The
homogenization16 approach consists in finding the effec-
tive homogeneous medium that approximate best the ini-
tial periodic structure. The incident planar wave “sees“
the structure as homogeneous when the cell’s dimensions
are small compared to the wavelength.

Early attempts of homogenization made in the nine-
teenth century, summarized in Ref.17, still give inspira-
tion today. The paper of Belov and Simovski18 discusses
the limits of homogenization and proposes an effective
permeability as a generalization of the classic Clausius-
Mossoti formalism.

In the well-know “field averaging“ Ref.19 and “field
summation“ Ref.20, the macroscopic fields are deter-
mined via averaging the local field obtained from a EM
simulation or analytical calculation in the unit cell with
periodic conditions. These approaches are well adapted
to study metamaterials with gradient properties21.

The asymptotic approaches22,23 can be applied for all
structure with complicate shape but the period of the
structure is necessarily negligible compared with the rel-
ative the free-space wavelength. The periodic unfolding24

can even model bianisotropic and dispersive metamate-
rials, unfortunately, it does not apply to resonant inclu-
sions, as the obtained effective parameters are the static
ones.

Other methods are based on the Floquet-Bloch
analysis25. The paper26 provides frequency dependent
bulk parameters, but cannot take into account a finite
conductivity. In Ref.27–29, the problem is solved in a
quasi analytical way, which give us a great physical in-
sight. The method developed in Ref.30 is purely numer-
ical and completely general. It applies to any shape of
inclusions while taking into account the spatial disper-
sion.

The novel numerical method of Ref.31 allows the ho-
mogenization of split-ring arrays with a finite conductiv-
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ity. It predicts a negative real part effective permeability
in a narrow frequency window. Limited to simple split
rings, it is an alternative way to determine numerically
the effective permeability, with a low computational cost.
In this paper, we describe the numerical implementation
of this method and analyze the obtained simulation re-
sults.
This work is organized as follows. In Section II, we in-

troduce the single split-ring based metamaterial physical
behavior when it interacts with a planar wave. The ho-
mogenization process, through the Floquet-Bloch analy-
sis, is inadequate when applied to the full Maxwell equa-
tions. We summarize the ingenious solution proposed
in31 to solve this issue. We use the finite elements method
to simulate the medium, and we describe the necessary
discretization process in Section III. Finally, the simula-
tion results and the comparisons with an analytical law
and free-space measurements are drawn in Section IV.

II. HOMOGENIZATION METHOD

A. The split-ring physics

Here, we explain the behavior of an array of split
ring resonators when interacting with a planar wave32–34.
We will take advantage of the translational symmetry
and only study the unit cell C, a cube defined by a set
{Vx, Vy, Vz} of orthnormal vectors. Having the homog-
enization hypothesis a ≪ λ, the electromagnetic field
is supposed uniform over the studied metamaterial. In-
deed, we have a split-ring based metamaterial immersed

in an uniform monochromatic field {E⃗, H⃗} with a time
dependency in eiωt. The ring R is “conductive enough“
to consider that all the electromagnetic fields are null
inside it.
The magnetic excitation H⃗ induces a flux Φ through

the ring. Besides, a strong electric field e⃗ is created in the
air gap region, ensuring an electric continuity by creat-
ing an electromotive force V across the slit. The created
capacitor allows a current I = iωCV to flow through the
ring even if it is discontinuous. In essence, the split-ring
is an LC-resonator, and the Faraday law iωΦ + V = 0
explains it by linking the capacitive and inductive con-
tributions.
Our goal is to find the permeability µeff of the ef-

fective medium that approximates best the actual meta-
material. The equivalent homogeneous medium behavior
is completely defined by it’s constitutive electromagnetic
parameters. This electromagnetic approach should lead
to a resonance of µeff to match to LC-resonator nature
of the split-ring.
Given the cell periodicity, all the electromagnetic pa-

rameters and the magnetic fields are C-periodic. So for
each vector τ in the Bravais lattice T = {

∑
i τiVi, τi ∈ Z

}. The permeability is invariant µ(M +τ) = µ(M) by all
translations of the group T , so the problem to solve P is
to find a linear relation B = µeffH between the averages

FIG. 1. The cubic unit cell C generated by an orthonormal
base {Vx, Vy, Vz}, hosts a single metallic ring R of section Σ
and split’s width d. The equivalent capacitance is C = ϵΣ

d

of the fields over the cell B = ⟨b⟩ and H = ⟨h⟩ :

|C|µeff (ω)H ·H = ⟨µ|h2| − ϵ̄|e2|⟩ (1)

Where |C| stands for the volume of the cell. The elec-
tric field e could be strong enough to let the effective
permeability become negative. We should obtain a fre-
quency dependent permeability, with negative values at
the resonance.

B. An issue with the homogenization

The homogenization presented here follows the Bloch
analysis idea. We take into account the conductivity in
the permittivity formula ϵ = ϵ0ϵr − i/(σω). Let us write
the Maxwell equations over the unit cell :

−iωd+ roth = j
iωb+ rote = 0

divd = q divb = 0
divj + iωq = 0
d = ϵe b = µh

(2)

The Floquet-Bloch decomposition of a function φ con-
sists in writing it as the sum of weighted functions φ̂κ

over the Brillouin zone B, the dual of the unit cell C,
generated by the dual vectors W iVj = 2πδij :

φ(x) = (2π)−3

∫
B
exp(iκ·x)φ̂κ(x)dκ (3)
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The Bloch modes φ̂κ live in the unit cell C and are
C-periodic. They are obtained by a discrete summation
over C :

φ̂κ(x) = |C|
∑
τ∈T

exp(−iκ· (x+ τ))φ(x+ τ) (4)

The Floquet-Bloch homogenization consists in throw-
ing (3) into the equation to be solved. which results in a
family of problems of the same kind, one for each κ. This
is very helpful when we have a single wavelength vector κ.
It could seem strange in our case to replace a differential
equation by an infinite set of equations. Nevertheless,
the homogenization process permits to solve the new set
of the problems indexed by κ in one stroke.

We begin by applying the Bloch analysis to the full
Maxwell equations. We notice that the curl and diver-
gence operators become (rot+ iκ×) and (div+ iκ· ). The
new problem P is for each κ :

−iωd̂κ + (rot+ iκ×)ĥκ = ĵκ
iωb̂κ + (rot+ iκ×)êκ = 0

(div + iκ· )d̂κ = q̂κ (div + iκ· )b̂κ = 0

b̂κ = µĥκ d̂κ = ϵêκ

(5)

The homogenization consists in shrinking the unit cell
C to a point, hence expanding the Brillouin zone B to
occupy the whole space. To study this limit, we will
work in a homothety of the symmetry cell Cα, of size αa.

C
α
= αC

C
α

C

(a)Shrunk unit cell Cα (b)Fields scaling

FIG. 2. Scaling operation

It has been proved31 that the weighted averages of φα

converges weakly to φ when α → 0. The exploitation
of the unit cell smallness (homogenization hypothesis)
comes by embedding this problem P in a family of prob-
lems Pα

κ with a periodic permeability over Cα. The scal-

ing transformation hα
κ(x) = ĥα

κ(αx) is needed to pull-
back to problem Pα

κ into C, and therefore, we are able to
compare Pα

κ for a fixed κ and different α′s. So we finally

have :

−iωαd̂ακ + (rot+ iκα×)ĥα
κ = αĵακ

iωαb̂ακ + (rot+ iακ×)êακ = 0

(div + iακ· )d̂ακ = αq̂ακ (div + iακ· )b̂ακ = 0

b̂ακ = µĥα
κ d̂ακ = ϵêακ

(6)

The weak limit when α → 0 of the previous problem
gives a value of the effective permeability but with dis-
appointing results. In fact, the obtained electromagnetic
parameters are the static one, with no frequency depen-
dency.

−iωd̂κ + iκ× ĥκ = αĵκ
iωb̂κ + iκ× êκ = 0

divb̂κ = 0 rotĥκ = 0

b̂κ = µeff ĥκ d̂κ = ϵeff êκ

(7)

C. From the split-ring to a closed ring

An ingenious solution to this problem comes by in-
troducing a second small parameter31, which competes
with the structure period a. In the case of the split
ring resonator, this small parameter is the slit’s width
d ≪ a ≪ λ. It becomes null faster than the symmetry
cell period. The choice of the slit’s width as a second
small parameter can be explained by the LC-resonator
analogy. The resonance condition LC ∼ ω2 must be
maintained during the homogenization and still an in-
variant feature for all the problems Pα. The capacity C
and the induction L evolves like α, so the resonance is
lost when the unit cell is shrunk (α → 0). By taking
a slit’s width that acts like α3d, we obtain a capacity
C ∼ Σ/d that behaves in 1/α and are able to maintain
the resonance. This particular choice of the problem Pα

is discussed in35. Taking into account the second hypoth-
esis leads to :

∫
Cα−R

iωhαh′ +

∫
Cα−R

(iωϵ)−1(rothα − j)roth′

+

∫
Σα

(iωϵ)−1α3d(n⃗· rothα)(n⃗· roth′) = 0 (8)

Once the Bloch transformation and the scaling applied,
we obtain :

α3

∫
C−R

iωhαh′

+ α

∫
C−R

(iωϵ)−1((rot+ iακ)hα − αj)(rot+ iακ)h′

+α3

∫
Σ

(iωϵ)−1α3d(n⃗· (rot+ iακ)hα)(n⃗· (rot+ iακ)h′)

(9)
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We clearly see that the new final term in α3 maintains
the balance between the capacitive and inductive influ-
ences. The second term implies a null curl of the vector

field h⃗ everywhere in the unit cell.
When this material is immersed in a periodic uniform

field H, a current I flows in the ring across the surface Σ.

And because ∇⃗×h⃗ = 0, a multivalued magnetic potential

φ exists as h⃗ = ∇⃗(φ). To maintain the right value for the
circulation of the field h follonwing the path L Fig.3, we
introduce a cutting surface S through which the magnetic
potential φ has a jump [φ]. According to Ampere’s law,
this jump equals the current [φ] = I. Also, we choose
to close the ring and model the slit by a surface Σn⃗ that
bears a capacitive layer :

FIG. 3. Closed metallic ring with a cutting surface S

The main result of Ref.31 is the weak formulation of
this electromagnetic problem that also take into account
the losses :

∫
C−R

µ∇⃗φ · ∇⃗φ′ +

∫
∂R

1− i

σωδ
∇⃗Sφ · ∇⃗Sφ

′ − 1

Cω2
[φ][φ′]

=

∫
C−R

µH⃗ · ∇φ′ (10)

Notice that even if the ring conductivity is finite, we
choose to model losses effects by considering that the
ring’s skin ∂R bears a lossy layer. Once the potential φ
found everywhere in the unit cell, we can compute the
permittivity µeff of the orthotropic equivalent material:

∫
C−R

µ|∇⃗φ|2 +
∫
∂R

1− i

σωδ
|∇⃗Sφ|2 −

1

Cω2
I2

= |C|,Hµ∗
effH (11)

The imaginary part of the permeability is clearly neg-
ative, while the real part becomes negative after the res-
onance frequency. The complex effective permeability in

the tree directions of the lattice is a 3x3 diagonal dyadic
T .µeff = diag(µxx, µyy, µzz). For instance, if the orien-

tated cutting surface S⃗ is collinear to Vz, we only need
the value of µzz(ω), obtained for H = Vz from equation
(11). The permeability dyadic is in this case:

µeff (ω) =

µ0µr 0 0
0 µ0µr 0
0 0 µzz(ω)

 (12)

III. DISCRETIZATION

We have to take into account the periodicity of the unit
cell when we mesh it. Therefore, each opposite faces of
the unit cell are identically meshed.

(a)V⃗x periodicity (b)V⃗y periodicity (c)V⃗z periodicity

FIG. 4. Identified pairs of nodes on the unit cell’s opposite
faces

Also, because the behavior of the resonant ring is de-
scribed by the cutting surface S and the skin depth δ,
it becomes unnecessary to mesh inside the ring. Finally,
we know that the potential has a jump through the sur-
face S. We can model this phenomenon by doubling the
nodes on the surface S. For each node Ns+ of the surface
S, we will add to the mesh another node Ns− having the
coordinates of Ns+. Ns− is connected to the tetrahedral
elements located “under“ the cutting surface S while Ns+

will be only connected to the tetrahedrons “above“ S.
The initial mesh and the geometry are created with

a Comsol script program which allows to choose the di-
mensions, the orientation and the ring geometry. Then,
another program transforms the mesh, by detecting the
nodes correspondence between the opposite faces of the
unit cell and by doubling the nodes on the cutting surface
S.

We use nodal finite elements associated to the elemen-
tary functions λi, to solve the previous weak formulation.
We have to solve a matrix equation Mφ = L. The mag-
netic potential on each node of the mesh φ is the vector
unknown and M the stiffness Hermitian matrix :

Mij =

∫
C−R

µ∇⃗λi · ∇⃗λj +

∫
∂R

1− i

σωδ
∇⃗Sλi · ∇⃗Sλj

− 1

Cω2
λIλ

′
I (13)
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FIG. 5. Node doubling on the cutting surface S.

Li =

∫
C−R

µH⃗ · ∇λi (14)

In fact, several equations link the components of
the unknown vector φ. We have constant difference
{Cx, Cy, Cz} of magnetic potential between the unit cell
opposite faces:

∀i
φi
x=α − φi

x=0 = Cx

φi
y=α − φi

y=0 = Cy

φi
z=α − φi

z=0 = Cz

(15)

Besides, the following equation links the unknowns on
the doubled nodes of the surface S with the current I:

∀i φi
s+ − φi

s− = I (16)

We have to eliminate the vector unknowns φx=α, φy=α,
φz=α and φs+, then compute the values of the four con-
stant unknowns Cx, Cy, Cz and I as well as the value of
the potential on the remaining nodes.

At this point, it is necessary to change the nodes
order to solve the matrix equation while taking into
account these constraints. The nodes should be re-
ordered to have the following unknowns vector : φ =
[φr, φx=0, φy=0, φz=0, φs+, φx=a, φy=a, φz=a, φs−]. We
place all the remaining nodes at the beginning of the
vector, those who are not on the faces of the unit cell nor
on the cutting surface S.

The new system that correspond to an unknown vec-
tor φ = [φr, φx=0, φy=0, φz=0, φs+, Cx, Cy, Cz, I] could
be described by a simpler case studied in the Appendix.

IV. RESULTS AND DISCUSSION

A. Numerical results

Several simulations have been made for different orien-
tations, ring’s dimensions, slit’s width and conductivity.
In this paper, most of the simulations are made on the
torus T 3

2 . It has a slit’s width of d = 0.1mm, an internal
radius rint = 2mm and an external redius rext = 3mm.
We choose air as a host medium and a period of 1cm.
The resonance is obtained at 8.18 GHz. The skin depth
δ is ensured to be much smaller than the slit’s width d
to maintain a coherent model of the ring.
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FIG. 6. Simulation of the structure T3
2 with σ = 60 106 S/m

(blue) and σ = 106 S/m (green)

The current and the relative effective permeability di-
verge at the resonance if we consider a perfect conductor.
When the losses are taken into account by considering
a finite ring conductivity, the simulations show that the
resonance frequency slightly decreases when the split-ring
is less conductive. The losses decreases with the ring’s
conductivity, and the real part of the effective permit-
tivity is smaller at the resonance when the ring is less
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conductive.
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FIG. 7. Magnetic isopotentials in a vertical slice of the unit
cell

Studying the isopotentials Fig.7 is necessary to deter-
mine a map of the electromagnetic field inside the meta-
material. The isopotentials are drawn on the vertical
slice that contains the center of the unit cell. The poten-
tial has only been computed on the mesh’s nodes, so, the
barycentric coordinates are used to interpolate the value
of the magnetic potential on each point of the slice. The
isopotentials have shown a potential ”jump” through the

cutting surface ∫ . As h⃗ is orthogonal to the isopotentials,
it seems that the major part of the magnetic field flows
through the cutting surface S.

B. Dimensions effect

The split ring is in essence an LC-circuit, for which we
have a resonance at the frequency LCω2

0 = 1. We can
deduce the influence if several parameters from this very
simple principle and confirm the validity of our simula-
tions.

The capacity is inverse proportional to the slit’s width,
and the equivalent inductance is completly independent
from this parameter. Therefore, the resonance frequency
f0 ∼

√
d is proportional to the square root of the slit’s

width, which is consistent with the simulations Fig.8(a).

The magnetic energy in the cell essentially depends on
the flux on the magnetic field through the curring surface
S. The equivalent inductance L ∼ πr2int is then propor-
tional to the area of S. In the other hand, the capacity is
proportional to the slit’s area C ∼ Σ = π(rext− rint)

2/4.
We find a final dependency of the resonance frequency
in f0 ∼ ((rext − rint)rint)

−1, which agrees very well with
the dependency profile that our simulations give 8(b)
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FIG. 8. Influence of the split-ring array dimensions

The impact of the array period on the resonance fre-
quency is much weaker than those of the rings dimen-
sions. A wider unit cell size means more magnetic energy
in it, and therefore a reduction of the resonance frequency
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8(c). But the influence of the cell size is weak because the
magnetic potential flows essentially through the cutting
surface S.

C. An analytical effective permeability formula

We can also study 2D structures by extending the rings
height to the unit cell size. The unit cell is then defined
by three areas :

1. The interior region A1, limited by the internal
boundary of the ring, of area a1 and where the
magnetic field is h = h1

2. The metallic ring R where h = 0.

3. The exterior region A2, limited by the external
boundary of the ring and the limits of the unit cell,
of area a2 and where h = h2.
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FIG. 9. Effective analytical and simulated permeability

By Ampere’s law, I = h1−h2 is the current that flows
through the ring. By Faraday’s law, the voltage drop
across the gap V = −iωΦ is related to the magnetic flux
Φ. This voltage drop is also the voltage across the ca-
pacitor conductors (the slit faces), so we have I = iωCV .
These relations give the electromagnetic fields outside the
ring :

h1 =
c µeffH

µ0(a1 + a2(1− Ca1µ0ω2))
=

h2

1− Cµ0a1ω2
(17)

The permeability is negative between the frequencies

ω1 = 1√
Ca1µ0

and ω2 =
√
1 + a1

a2
ω1 :

µeff = µ0
a1 + a2

c

(
ω
ω2

)2

− 1(
ω
ω1

)2

− 1
(18)

Far from the resonance, the material is supposed to
behave as a diamagnetic one. In fact, the ring’s acts like
an obstacle to the magnetic flux, which is weaker than
the flux in an empty elementary cell.

The effective permeability of circular and square rings
have been computed and compared to the analytical one
Fig.9. The areas a1 = 9mm2 and a2 = 51mm2 are the
same in the three cases to have a common basis of com-
parison. The simulations shows a very good agreement
with the formula (18). While the resonance frequency
with the analytical law give 3.57 GHz, the circular and
square rings resonate at 3.38 and 3.54 GHz. The agree-
ment is better for the square ring because the constant
field hypothesis would less describe the magnetic field in
the case of circular contours.

The asymptotes near the resonance of the analytical
law do not match those of the simulated curve because
we assumed constant fields in the areas A1 and A2. How-
ever, the frequency window where the permeability has
a negative real part is clearly consistent with the ana-
lytical results even with the constant fields simplifying
hypothesis.

D. Free space measurments

We compare in this section the measured resonance fre-
quency of an array of circular split-rings to the results of
the simulations and the analytical law Eq.18. The mea-
surements are done in free space with two horn antennas
(2–18 GHz), focused with Rexolite lenses. The focused
beam is considered as Gaussian, so we ensure that the in-
cident wave is planar, at least in the narrow region where
we put the metamaterial to be measured.

The PNA S-parameters have to be calibrated before
we have the proper S-parameters. To achieve the TRL
(Thru, Line, Reflect) calibration procedure, we use a two
port model correction. Therefore, we need to move the
second horn antenna by the thickness of the metal plate
(Reflect). Micrometric positioning fixtures are used to
move precisely the antennas along the propagation axis.

FIG. 10. Free space characterisation of an epoxy slab hosting
copper rings
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However, the calibration procedure is not sufficient to
eliminate the multiple reflections noise. We apply a gat-
ing in the time domain, which greatly reduce the noise,
but make the S-parameters ring in the frequency domain.
We show here the measures of a split-ring array of copper
rings hosted in epoxy (ϵr = 4.8). The sample is 1.6 mm
thick in the propagation direction, and 20x20 cm2 wide
in a transverse plane. The unit cell is 1cm large and
contains a copper ring of internal radius rint = 1mm,
external radius rext = 2.5mm and slit’s width is 1mm.
These dimensions have been chosen to obtain a resonance
near 10GHz. Our purpose is to avoid the limits of the
range 2–18 GHz because the ringing phenomena induced
by the gating make the S-parameters less precise there.

We choose to characterize this metamaterial with a
perpendicular polarization, for which the magnetic field
is transverse to the rings. It is quite different from the
parallel polarization that we used in our simulations, but
it appears from Ref.11 that the resonance frequency is
the same in the two cases .
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FIG. 11. S21 measured parameters in free space

This sample have a measured resonance frequency of
10.36 GHz. The simulations and the analytical law give

respectively 10.19 GHz and 10.1 GHz. Hence, we obtain
a very good agreement.

V. CONCLUSION

We have successfully computed by homogenization the
frequency dependent permeability of split-ring arrays.
We were able to solve the encountered issues when one try
to homogenize metamaterials with resonant inclusions.
By its original transformation of the single split-ring by
a closed ring, this method provides a computation of the
effective permeability at a minimal cost. Besides, the
simulator structure and effectiveness offers a simple way
to optimize these metamaterials shapes and dimensions.

The influences of the ring dimensions are predicted by
simple physical arguments, that consists in replacing this
metamaterial with it’s equivalent LC circuit. The cor-
rectness of our method is verified by comparing numer-
ical, analytical and measured results for bidimensional
structures. The simulations are in fact more precise than
the analytical law and they predict the resonance fre-
quency with a relative error of 1.6%.

However, the slit’s relative position doesn’t play any
role in a closed ring effective permeability. A possible
model of the capacitive layer Σ by edge finite elements
would properly take into account it’s position and de-
scribe the displacement currents through the slit. This
evolution of our model would permit to simulate the unit
cells containing multiple split rings.

Appendix: Solving a Hermitian system with
constraints

In this appendix, we show through a simple case how
to transform a hermitian matrix equation to take into
account a constraint over the unknown vector. Suppose
that we want to solve the following system AX = B. The
matrix A being hermitian (T Ā = A), it is defined by six
block matrices :

A11 A12 A13
tĀ12 A22 A23
tĀ13

tĀ23 A33

xy
z

 =

b1b2
b3

 (A.1)

Suppose that a constraint zi − yi = C applies to all
the elements of the vectors y and z. To get rid of these
redundant unknowns, we multiply the equation sides by
the vector tX̄ and then substitute the z vector compo-
nents by zi = yi + C. The brand new hermitian matrix
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equation to solve is A′t[xyC] = B′, with.

A′ =

 A11 A12 +A13

∑
j A

ij
13

A21 +A31 A22 + 2A23 +A33

∑
j A

ij
23 +Aij

33∑
i A

ij
31

∑
i A

ij
32 +Aij

33

∑
i

∑
j A

ij
33

 b1
b2 + b3∑

i b
i
3


(A.2)
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1096 (2007).

21 D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig,
Phys. Rev. E 71, 036609 (2005).

22 G. Allaire, SIAM Journal on Mathematical Analysis 23,
1482 (1992).

23 D. Cioranescu, A. Damlamian, and G. Griso, SIAM jour-
nal on mathematical analysis 40, 1585 (2008).

24 M. Belyamoun and S. Zouhdi, in Electromagnetics in Ad-
vanced Applications, 2009. ICEAA ’09. International Con-
ference on, IEEE Conferences, Vol. 1898 (2009) pp. 952–
953.

25 G. Allaire and C. Conca, Journal de Mathmatiques Pures
et Appliqus 77, 153 (1998).
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