Time domain investigation of the tunneling modes in photonic heterostructure
 containing single negative materials
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Abstract We present a theoretical investigation into the energy transport and transient wave propagation in the metamaterial tunneling structures consisting of ε-negative (ENG) and μ-negative (MNG) materials. It is proved that the conjugated matched ENG/MNG bilayer and the (zero- index material doped) photonic crystal heterostructure can work as a sub-wavelength resonator at tunneling frequency. While the tunneling modes need a certain time to achieve the steady state and the charge up characteristic time increases (nearly) exponentially with the thickness of the structures. Under the steady state, the wave in the single negative material structures is not evanescent, but a hybrid of traveling wave and reactive standing wave. The phase difference between the electric field and magnetic field varies with the position and time. The investigation of transient wave propagation in the metamaterial tunneling stuctures will help us to understand the interaction process between wave and metamaterial and to design special functional apparatus. 
1. Introduction

Recently, metamaterials with non-positive permittivity and/or permeability have attracted people’s interest due to their unique electromagnetic (EM) properties[1-8]. Besides double-negative metamaterials (ε<0, μ<0) [1,2], single negative metamaterials including ε-negative (ENG) materials (ε<0, μ>0) and μ-negative (MNG) materials  (ε>0, μ<0) [3-6] and zero-index metamaterials (ZIMs)[7-9] in which ε=μ=0 or ε=0, μ≠0(ε≠0, μ=0) also deserve special attention. Based on the Maxwell equations, the fields inside a matched ZIM(ε=μ=0) should be homogeneous [10]. One of the most important features of metamaterials is the amplification of the amplitude of evanescent wave, and the double-negative metamaterials are used to realize perfect lens[2]. Furthermore, it was demonstrated that the enhancement of the evanescent wave also exists in an ENG/MNG bilayer and the (ZIM doped) photonic crystal heterostructure at zero average parameters[3,5]. The tunneling structures can work as a sub-wavelength resonator since the tunneling mode is independent of the scaling. In fact, the tunneling mode needs a certain time (which can be described with charging up characteristic time (CT) τ) to achieve the steady state, the CT increases (nearly) exponentially with the thickness of the conjugate matched ENG/MNG bilayer[11,12]. In Ref 13 and 14, the tunneling times of EM wave in metamaterials were studied. In this paper, we study the transient wave propagation and energy transportation in the (ZIM doped) photonic heterostructure containing single negative materials.
2. Model and theory
For the sake of simplicity, we first consider the ENG/MNG bilayer, and a TM plane wave (Ex, Hy) is incident normally on the bilayer, which is shown in the inset of Fig. 1. After applying the boundary conditions on the three interfaces of the bilayer and some mathematical manipulation, the complete tunneling condition for the ENG/MNG bilayer can be expressed as[3]:
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where d1 and d2 are the thickness of ENG and MNG slabs, respectively. As a special case, a conjugate matched bilayer is denoted by 
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, (i=ENG, MNG). Where the bilayer possess zero average permittivity and zero average permeability. The steady state EM fields in the bilayer can be expressed as follows.
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Region MNG:
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where E0 is the incident electric field amplitude and the wave impedance in free space and single negative material are 
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and  in all the regions is constant, where 
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, respectively. In our previous paper [12] it is shown that ENG/MNG can work as a special resonator, there is a substantial amount of EM energy (WEM) stored in the bilayer. It takes a certain amount of time for the fields at ENG/MNG interface and the exit of MNG slab to reach its steady state which can be descried by charging up process. The charging up process of the resonator with a rectangular waveform signal follows 1-exp(-αt) [15], where the charging up coefficient α=ω/2Q with the quality factor of the resonator 
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, T is the cycle of the wave and d is the thickness of the slab. It increases exponentially with the thickness of the slab, corresponding to the increase of Q factor of the tunneling mode as shown in Fig.1(a) (the solid line). According to the theory[5], the (ZIM doped) photonic heterostructure containing single negative material can also possess complete tunneling mode under zero average parameters. And the transient wave propagation in the tunneling structures is studied by finite-difference time-domain (FDTD) method[16].
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Figure 1. (a) The analytical and FDTD simulated charging up characteristic times τ/T vs d of the conjugated matched ENG/MNG slabs, the inset is the steady state EM fields distribution at tunneling frequency (b) The phases of electric and magnetic fields and their phase difference, where f0 = 1GHz, ε/ε0 = 2, µ/µ0 = 2, d = 37.5mm.

3. Results and discussions
Consider an example where the Drude models for the permittivity and permeability in the lossless ENG and MNG slabs are:
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is frequency measured in GHz and 
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. According to the conjugate matched condition Eq.(1), the bilayer exhibits a complete tunneling mode at f0=1GHz. The conjugate matched ENG and MNG bilayer shown in the inset of Fig. 1 is modeled by using FDTD method[16]. The amplitude and phase profiles of the steady state electric and magnetic fields are plotted in Fig. 1 In simulation, the problem space is 1500 cells long, where 
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. A plane sinusoidal wave is launched at about half a wavelength away from the surface of ENG with a rectangular waveform. The thicknesses of the ENG and MNG layers are
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, the time step is set to be
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. As from the time histories of the electric field and magnetic field in Ref.11, it is shown that the charging up process of the resonator with a rectangular waveform signal follows 1-exp(-αt). As verification to this theory, we have also computed the charging up characteristic time τ/T in the transient process simulations and plotted it in Fig. 1(a) as well. The analytical and simulated results agree well with each other. It can be seen from Fig. 1(a) that the charging up characteristic time increases ‘exponentially’ with the thickness of the slab. It is due to the ‘exponential’ increase of the reactive field inside the bilayer, leading to a substantial increase of the Q factor.
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Figure 2. (a) Transmittances of the photonic heterostructure (AB)5(CD)5 (black solid line)and the ZIM doped heterostructure (AB)5ZIM(CD)5 (blue dotted line). (b) The steady state EM field distribution corresponding to the heterostructure tunneling mode. 

From Fig.1(b), it is interesting to observe that the phases (
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) of Ex and Hy vary in an opposite way inside the ENG and MNG slabs – not being constant for typical evanescent wave. The phase variations of EM fields inside the ENG slab are completely ‘compensated’ inside MNG slab. Moreover the phases of EM fields remain the same at the entrance and exit of the bilayer, which is the resonance condition. The thickness of bilayer is much shorter than the wavelength (2d=λ0/4) which indicates that the conjugate matched ENG/MNG bilayer is a unique sub-wavelength open-cavity resonator. The phase difference θi between E field and H field starts with zero at the entrance to ENG slab, indicating a pure travelling wave, then increases inside the ENG slab, suggesting that the electric field starts to decouple with the magnetic field – becoming partly reactive. The phase difference reaches to its maximum, corresponding to a strongest reactive field or standing wave at the ENG/MNG interface. The phase difference starts to fall inside the MNG slab, indicating the dropping of reactive field, and reaches to zero at the exit of MNG slab – back to a pure travelling wave. It indicates clearly that the electromagnetic fields inside the conjugate matched ENG/MNG bilayer is a hybrid of travelling wave and reactive standing wave with the ratio between them varying with the position.  

It was shown that a one-dimensional photonic crystal stacked by alternating MNG layer and ENG layer can possess photonic bandgaps originating from the interaction of evanescent-wave-based interface modes[5,6]. While the photonic heterostructure (AB)m(CD)n (as shown in Fig. 2(b)) and the ZIM doped photonic heterostructure (AB)mZIM (CD)n (as shown in Fig. 5) possess complete tunneling modes without phase shift under the zero average permittivity and average permeability condition. And the tunneling structures can also work as a sub-wavelength resonator[5], where A(C) and B(D) indicate ENG materials and MNG materials respectively and m(n) is the period number. In addition the photonic heterostructure (AB)m(CD)n can be an effective ENGeff/MNGeff bilayer under the tunneling condition. According to the effective medium theory, the effective permittivity 
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[17]. Here we use Drude model to describe the isotropic lossless metamaterials,
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 for ZIM materials. At about 1.0GHz, ZIM posses zero effective parameter. The thicknesses of ENG , MNG and ZIM slabs in the two tunneling structures are assumed to be
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 respectively. We consider the transverse electric wave case, e.g., the electric field lies in the
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direction. The treatment for the transverse magnetic wave is similar. The transmittance and field distributions of the structure can be obtained by means of the transfer matrix method[18]. 

As shown in Fig.2(a), the photonic heterostructure (AB)5(CD)5 (black solid line) and the ZIM doped heterostructure (AB)5ZIM(CD)5 (blue dotted line) possess complete tunneling mode at 1.0GHz. The steady state EM fields distribution corresponding to the tunneling mode is shown in Fig.2 (b). It is shown that the EM fields concentrate on the interface and the evanescent fields are seemed to be amplified in single negative materials. It is worth to note that the establishment of the tunneling mode will also need a certain time to achieve the steady state.
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Figure 3. Snapshots of the electric field and magnetic field profiles at different moments of transient wave propagation: (a) a wave comes from the free space to the heterostructure, (b)at entering (AB)5, (c) at entering (CD)5, (d) at building-up of the reactive field, (e) reaching to the steady state.

In order to study the transient wave propagation process, the time histories of the electric field and magnetic fields at any position of the tunneling mode are simulated, which are not shown here since they are similar to that in Fig.2 in Ref.12. The detailed transient wave propagation through the photonic heterostructure is further investigated by observing the animation of electric and magnetic fields. Some snapshots of the field profiles in sequence are shown in Fig. 3. Fig. 3(a) shows when the incident wave enters into the photonic heterostructure (AB)5(CD)5 with the reflection at the air-ENG interface – the phases of electric and magnetic fields being split, which indicates that the phase difference appears. Fig. 3(b) shows when the wave reaches to ENG/MNG photonic crystal, a further reflection occurring at the ENG/MNG interfaces. Fig. 3(c) shows a moment when the attenuated wave tunnels through the heterostructure with more reflection. Fig. 3(d) shows a moment of the reactive fields being built up inside the heterostructure due to the multiple reflections and transmissions. Fig. 3(e) shows a moment of the steady complete tunneling state being reached – indicating a complete transparency of the heterostructure to the incident wave. 
In Fig. 4. (a), the analytical and FDTD simulated characteristic times τ/T vs the thickness of the photonic crystal (AB)n are shown, where n is the period number. The black solid line is the analytical results, in which the effective parameters (i.e. εeff, μeff, and d) are used, the stars (solid circles) represents the FDTD simulated characteristic times based on (AB)n(CD)n ((AB)nZIM(CD)n) structure. It is shown that the CT is larger than that of ENG/MNG bilayer because of multiple reflection. Fig.4(b) shows the phase difference between the electric field and magnetic fields in the photonic heterostructure (AB)5(CD)5 at the resonance frequency. It is interesting to notice that the phase differences are nearly symmetrical relative to the heterostructure interface where the phase difference is maximum. In fact, it is observed that the phase differences at any position also vary with time in the transient process. So under the steady state, the waves in the single negative material structures are also not evanescent, but a hybrid of traveling wave and reactive standing wave, and the phase difference between the electric field and magnetic field varies with the position. While the steady state phase difference between electric field and magnetic field is zero at the entrance and exist of the tunneling structure which indicates the complete transparency.
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Figure 4. (a) The analytical and FDTD simulated characteristic times τ/T vs the thickness of the photonic crystal (AB)n, n is the period number. (b)The phase difference between the electric field and magnetic fields in the photonic heterostructure (AB)5(CD)5 at the resonance frequency.

Fig. 5. (a) shows the steady state EM field distribution in the ZIM doped photonic heterostructure (AB)5ZIM(CD)5 at the tunneling frequency. It is clear that the fields in single negative material are also amplified and the fields are all uniform in the ZIM material. The phase difference between the electric field and magnetic fields in the heterostructure (AB)5ZIM(CD)5 at resonance frequency are shown in Fig.5(b), it is also shown that the EM fields inside the structure is a hybrid of travelling wave and reactive standing wave with the ratio between them varying with the position. The phase difference is the same in all the ZIM material and the phase difference is a maximum. It is found that the phase difference in the tunneling structures compensates the field amplitude at very position to keep the power flow constant.
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Figure 5. (a) The steady state EM field distribution in the ZIM doped heterostructure (AB)5ZIM(CD)5 at the tunneling mode. (b)The phase difference between the electric field and magnetic fields in the heterostructure (AB)5ZIM(CD)5 at resonance frequency.

4. Conclusions
In conclusion, the transient establishment process of the tunneling mode in the photonic crystal heterostructures containing single negative material are studied by FDTD method. It is shown that the conjugate matched ENG/MNG and the (ZIM doped) photonic crystal heterostructure can work as a sub-wavelength resonator at tunneling frequency. While the tunneling modes need a certain time to achieve the steady state and the CT increases (nearly) exponentially with the thickness of the ENG/MNG bilayer, the CT of the (ZIM doped) photonic crystal heterostructure is larger than that of ENG/MNG bilayer due to multiple interface reflection. Under steady state, the wave in the single negative material is a hybrid of traveling wave and reactive standing wave, and the phase difference between the electric field and magnetic field varies with the positions.
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