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Abstract 

Super-resolution imaging involves the interaction of 
electromagnetic waves with objects that have dimensions 
similar to, or smaller than the wavelength. That is precisely 
the hallmark of microwave technology. It suggests that 
microwave concepts and design approaches may not only 
be helpful in the description and modeling of the superlens 
behavior, but also provide useful tools for designing and 
realizing the superlens, notably the metamaterial itself. In 
this paper we present some interesting results and insights 
yielded by the microwave perspective, including 
waveguide, circuit and filter representations of the 
superlens.  

1. Introduction 

The goal of modeling devices or physical processes is to 
capture their essential characteristics. Reduction to the 
simplest possible representation not only facilitates their 
theoretical and numerical treatment but also can provide 
insights that are helpful in relating new observations to 
known phenomena. In the case of superresolution imaging 
with the Veselago/Pendry superlens [1][2] consisting of 
double-negative metamaterial, the use of waveguide and 
lumped element circuit models can considerably simplify 
both its theoretical and its numerical analysis at various 
levels of abstraction[3]. Given the long time required for the 
lens to reach the steady-state [4][5][6][7], such simplified 
models facilitate exploration of resolution limits, allow easy 
quantification of its imaging performance, and provide a 
link to microwave engineering and filter design. In this 
paper we highlight some interesting results and insights 
yielded by the microwave and filter perspective [6].  

2. Waveguide model of sub-wavelength imaging 

The imaging of a sub-wavelength sized object is typically 
based on a spatial Fourier transform of the field emanating 
from the object, either directly or by scattering of an 
incident field. The resulting continuous spatial spectrum is 
then transferred in the frequency domain through the 
superlens, and the image is recovered by inverse Fourier 
transform. In the general case this is a three-dimensional 
electromagnetic problem that must be solved in a semi-
infinite half-space. Clearly, the treatment of this problem 
with space- and time-discrete numerical methods such as 

FDTD or TLM [8], will require large computational 
resources and long simulation times. 

2.1.  Discretization of the spatial spectrum 

The first major simplification of the problem is achieved by 
discretizing the spatial spectrum of the object field into a 
series of harmonically related samples. This yields a spatial 
Fourier series; its inverse Fourier transform corresponds to 
the field produced not by a single object, but by an infinite 
array of such objects. Fig. 1 illustrates this concept for an 
object field that has the form of a half-cosine (approximating 
the field in a narrow slot illuminated by a plane wave 
polarized parallel to the slot (Fig. 1a)). The spatial Fourier 
transform perpendicular to the slot is given by: 

 
 , (1) 
 

 
where w is the width of the slot, and k=t is the 
transverse wavenumber or spatial angular frequency. (1) 
represents the continuous spatial spectrum shown in 
normalized form in Fig. 1b. If we sample this spectrum at 
intervals n=k/k we obtain a Fourier series which represents 
the discrete spectrum of an infinite array of identical slots 
separated by a distance s=2/k (the red curve in Fig. 1a). 
 
The latter curve has been obtained by adding only the first 
six Fourier terms together. Again, the functions are 
normalized for better comparison. This example shows that 
the image of a single slot is well approximated by an image 
of periodic slots over the base w. However, the discrete 
Fourier series approximation considerably simplifies the 
mathematical formulation of image transmission by the 
superlens. It naturally leads to the spectral waveguide model 
of the superlens reported in [6]. This model not only yields 
existing steady-state formulations of superlens behavior in 
well-known waveguide terminology, but it also dramatically 
reduces the computational burden of numerical solutions 
when studying the dynamics of the lens. Note that this 
waveguide model describes the transfer of the object field to 
the image plane in terms of propagating and evanescent 
waveguide modes and is not a representation of the 
metamaterial of the lens. It is especially helpful in the 
transient numerical analysis of superlens behavior that 
requires millions of time steps [6]. 
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Fig. 1 (a) Electric field in a single slot and in periodic 

slots in a perfect conductor. (b) Normalized spatial spectrum 
of the single slot (continuous) and of periodic slots 
(discrete). w=40 nm, s=100 nm. Note that the term at n=0 
has only one-half the amplitude of the continuous spectrum 
since the spectral terms for negative n are not included in the 
discrete spectrum. 

 

2.2. Waveguide model of coupled plasmonic resonances 

The spectral waveguide model is well suited for the 
investigation of the dynamic field response of the superlens. 
As discussed in [4][5][9][10][11] the evanescent part of the 
object field (transmitted in the form of evanescent 
waveguide modes) excites surface resonances on the two 
faces of the superlens, thus forming a system of two weakly 
coupled resonators. In fact, the lens can support an even and 
an odd mode of coupled resonances. Their resonance 
frequencies are the roots of a transcendental transmission 
line equation formulated in terms of waveguide impedances 
and propagation constants. The equivalent transmission line 
models are shown in Fig. 2. When we simulate the 
metamaterial lens in the waveguide model using the time 
domain TLM method, we employ a dynamic double-Drude 
model that allows the metamaterial parameters to evolve 
naturally with time and frequency during the transient 
build-up of electromagnetic energy in the metamaterial. Its 
parameters ε’ and μ’ are given in [6], and the TLM 
implementation of the Drude model is derived in [8]. Note 
that in this model ε’ and μ’ have the same frequency 
dependence. Hence, only the refractive index changes while 
the intrinsic impedance remains constant. The propagating 
part of the object field will thus cross the lens without 
scattering at the lens interfaces, even when the frequency 
deviates from the operating frequency. For TE excitation as 
in Fig. 1(a), all evanescent modes exhibit inductive 

behavior in the air-filled waveguide sections, while they 
behave capacitively in the metamaterial section. This 
indicates that the resonant response of the lens can be 
predicted by an extremely simple lumped element network 
consisting of two resonant LC circuits that are loosely 
coupled through a small reactive series element. This opens 
the way to the application of circuit and filter concepts to 
superresolution imaging. 
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Fig. 2 Odd and even resonance conditions of the metama-
terial superlens, modeled by the equivalent waveguide 
model. Even and odd eigenfrequencies are those frequen-
cies at which the sum of the two impedances Z1e and Z1o in 
the plane A becomes zero in the even and odd cases, respec-
tively (after [6]). The double-Drude frequency dependence 
of ε’ and μ’ is included in the transcendental resonance 
conditions. 
 

 
Fig. 3 Even and odd eigenfrequencies of the superlens for 
transverse wavelengths of 100 nm (first spectral term) and 
50 nm (second spectral term), obtained with MEFiSTo-3D 
Pro simulation. Simulation data and theoretical values pre-
dicted by the transverse resonance conditions in Fig. 2 agree 
within 0.1% (From [6] © 2011 IEEE). 
 

3. Lumped equivalent circuit of the superlens 

The equivalent circuit of the lens and its even and odd 
variants that emulate the responses of the lens at the 
operating frequency and at the even and odd frequencies are 
shown in Fig. 4 a-c. The waveguide formalism yields 
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simple expressions for the elements of the equivalent circuit 
in terms of the wave properties of the metamaterial at ω0 
[6]. However, to accurately predict the even and odd 
resonant frequencies the capacitive elements of the circuit 
model should ideally be frequency-dependent. This would 
complicate the circuit model, and since the lens is used 
essentially at the operating frequency ω0, it is more 
important to accurately predict the field transmission at ω0 
then the even and odd resonant frequencies. In fact, the 
error in the circuit prediction becomes negligible for higher-
order spectral terms where the coupling across the lens 
weakens exponentially until the two resonances degenerate 
onto a single resonance at ω0. This tendency is clearly 
visible in Fig. 3. 
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Fig. 4  Electric field distribution and equivalent lumped 
element circuit of an evanescent mode in the superlens (a) 
at the operating frequency, (b) at the even, and (c) at the 
odd frequency of resonance.  
 
Note that the models in Figs. 2 and 4 are valid for individual 
evanescent spectral terms, but the values of the circuit 
elements are different for different spectral terms.  
 
The final step is now to create an equivalent network 
representation of an entire superresolution system based on 
a perfect Veselago/Pendry lens. Such a network includes a 
simple transmission line section for the propagating part of 
the spectrum, and one equivalent circuit for each evanescent 
term. Knowing that at the operating frequency the field 
decays exponentially in positive x-direction, each section 
can be represented by an ideal transformer of turn ratio 

/2
1

xnk dn e  where knx is the longitudinal decay constant of 
the n-th spectral term. This value is based on the assumption 
that the object and image planes are both located at a 
distance d/2 on each side of the lens. The network thus 
consists of as many modal equivalent networks as there are 
Fourier terms to be transmitted (see Fig. 5). 
 
The steps involved in the image transmission with this 
model are as follows: 
 

a. Perform a spatial Fourier transform of the object 
field produced by the sub-wavelength object; 

b. Discretize the spectrum into a Fourier series; 

c. Determine the parameters of the equivalent circuit 
in Fig. 5 for each evanescent Fourier term (details 
are given in [15]; 

d. Compute the output voltage of each circuit in 
response to the excitation by the appropriate 
Fourier term (Voltage proportional to the Fourier 
coefficient); 

e. Compose the image by combining all transmitted 
Fourier terms with their appropriate structure 
function. 
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Fig. 5  Equivalent network for predicting the transmission 
of the discrete spatial Fourier spectrum of an object through 
a double-negative superlens. The system comprises one set 
of transmission lines for the propagating term and one 
coupled resonator pair for every evanescent term of the 
discrete spatial spectrum. Vin and Vout correspond to the 
modal amplitudes of the E-field in the object and image 
planes. 
 
One might ask what the benefit of such an equivalent circuit 
would be when there exists already a well-known analytical 
transfer function in the literature that will give the same 
result. The main advantage of the circuit model is the 
physical interpretation of the lens as a system of two 
coupled resonators [6] [7] which could be used as a 
technology for alternative superresolution structures 
[12][13]. The fishnet concept, for example, employs 
coupled resonant apertures that can be represented by 
circuit models [14] very similar to our coupled resonator 
model in Fig. 5. The challenge is to create coupled 
resonating structures that are small enough to resolve the 
spatial wavelength of the highest term of the spatial Fourier 
spectrum in the transverse plane. For the dimensions given 
in Fig. 2 a maximum of five terms (0 ≤ n ≤ 4) can typically 
be transmitted by the lens [6]. Fig. 11 of [6] shows typical 
images of a sub-wavelength slot, obtained by adding four 
and five transmitted Fourier terms together. Further 
research is underway to explore how to realize and arrange 
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the different modal resonators to achieve sufficiently large 
spatial bandwidth suitable for superresolution imaging. 

4. Conclusions 

We have shown that the field emitted or scattered by a sub-
wavelength object can be closely approximated by a Fourier 
series through sampling of its continuous spectrum. The 
discrete spectral terms can be interpreted as the eigenmodes 
of a spectral waveguide model that allows us to describe the 
superlens imaging of the object using waveguide formalism. 
The waveguide model is especially useful for numerical 
modeling of superlens imaging because it provides a 
compact computational domain truncated by boundary 
conditions that are numerically robust (perfect electric and 
magnetic walls), and allows fine discretization and large 
numbers of time steps that are required to handle the long 
settling times of the higher evanescent spectral terms. The 
waveguide model naturally leads to an even simpler coupled 
resonator model of the Veselago-Pendry superlens which 
provides deeper physical insight into the physics of the 
superlens, connects it with the theory of filters and resonant 
surfaces, and may facilitate the search for alternative ways 
to realize superresolution devices.  
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