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Abstract 

Acoustic metamaterials constructed by resonant 
microelements in subwavelength scale were generally 
characterized by the effective medium approximation 
theory, which neglects the interaction between adjacent 
elements. In this paper, we show that twisting the 
orientation of resonators in acoustic metamaterials produces 
secondary coupled resonant modes by introducing internal 
vibration interaction. Metamaterials composed of single-slit 
Helmholtz resonator arranged in two-dimensional square 
lattice are investigated. We rotate a portion of the resonator 
so that the adjacent resonators in ΓX direction have a twist 
angle of φ. For the system with φ = 180°, the coupling 
interaction produces the symmetric coupled mode in in-
phase oscillation and the anti-symmetric coupled mode in 
out-of-phase oscillation. This acoustic analog of 
“hybridization effect” leads to a sharp transparency window 
in the extended locally-resonant forbidden gap, which is 
analogous to the phenomenon of electromagnetically 
induced transparency. Such coupled resonant modes may 
have potential applications in sound wave manipulations 
such as acoustic filtering and imaging. 
 

1. Introduction 

Recently, acoustic metamaterials have received high interest 
due to their unprecedented physical behavior beyond those 
found in nature [1, 2]. In particular, the effective bulk 
modulus and mass density can be simultaneously or 
independently negative within a certain frequency region, 
which is unattainable using traditional composites. These 
intriguing properties allows ability to control sound in novel 
ways, ranging from acoustic cloaking [3-5] and 
subwavelength imaging [6-10] to sound energy 
superabsorption [11]. Most of the acoustic metamaterials 
reported to date are based on localized resonance induced by 
the subwavelength microelements. Negative effective bulk 
modulus and mass density can derive from appropriate 
monopolar and dipolar resonance, respectively [12]. One 
famous example is the engineered acoustic metamaterial 
consisting of Helmholtz resonator (HR), which is a tiny 
structure featuring a miniature gap analogous to the metal 
split-ring resonator in electromagnetic metamaterials [13]. 
Unique properties such as low-frequency locally-resonant 
band gap and anomalous transmission behavior have been 

demonstrated theoretically and experimentally [10, 14-17], 
and further numerical retrieval analysis of transmission-
reflection coefficients also confirms the negative bulk 
modulus in one-dimensional HR chain and two-dimensional 
HR array [18-20]. Subsequent researches observe negative 
refraction, surface modes and superlensing effect via 
homogenization near resonance in a finite array of HRs [9, 
10, 15].  

The acoustic metamaterials derive their overall 
properties from individual sub-wavelength resonators. 
Changing the size and geometry of the HR determines the 
acoustic properties of the metamaterial and its operation 
frequency. The general case of describing an acoustic 
metamaterial uses the effective media approximation (EMA) 
theory [1, 14]. In EMA model, since the resonator element 
is much smaller in size than the working wavelength, the 
response of the acoustic metamaterial is treated as the 
averaged effects of the individual element’s resonance 
response. Thus the metamaterial can be characterized by the 
effective parameters of mass density and bulk modulus. 

 However, the EMA theory ignores the coupling 
interactions between the resonator elements, which always 
exist when the elements are structured into metamaterials. 
Previous studies demonstrate that parallel HRs with 
identical resonant frequency could couple with each other, 
and the intensive interaction between adjacent HRs 
significantly extends the width of the locally-resonant 
forbidden gap, which is different from the case in solid 
elastic metamaterials [21]. The aim of our work is to 
demonstrate the coupled resonant modes in twisted acoustic 
metamaterials. In this paper, significant modulation to the 
band structure is investigated using the analyses of the 
dispersion curves and the transmission spectra. We identify 
these coupled resonances through the pressure fields of the 
supercell’s eigenmodes. The adjunct resonator elements 
oscillate in-phase for the symmetric coupled mode and out-
of-phase for the anti-symmetric coupled mode. These 
coupled resonant modes further lead to some “hybridization 
effect”, which split the dispersion curves and causes the 
occurrence of sharp transparency window in the extended 
forbidden gap. This kind of coupled resonant mode may be 
used to develop novel functional acoustic devices in the 
future, including acoustic imaging with deep subwavelength 
resolution and acoustic transparency. 
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2. Description of the model 

Figures 1(a) and 1(b) illustrates the schematic configuration 
of the regular acoustic metamaterial and the proposed 
twisted metamaterial. The cut-off view of the samples in x-y 
plane and the schematics of the corresponding supercells are 
plotted in the upper and lower panels, respectively. The 
structure we investigated is comprised of identical HRs 
periodically arranged in square lattice. The HRs are 
cylindrical metal shells with single slit. The outer and inner 
radii of the shells are a and b, respectively. The lattice 
constant is d and the height of the slit is h. The system is 
translationally invariant in the z-direction. The host medium 
is fluid such as water with bulk modulus κ0 and mass density 
ρ0, and the HRs are assumed as rigid-walled due to the 
mismatched acoustic impedance between metal and fluid. A 
supercell contains two HRs aligned along the x axis and the 
right HR is rotated with twist angle of φ [φ = 0° for regular 
metamaterial in Fig. 1(a) and φ = 180° for twisted 
metamaterial in Fig.1 (b)]. 
 

 
Figure 1: Scheme diagram and the corresponding 
equivalent acoustic circuit of (a) the regular acoustic 
metamaterials with φ = 0° and (b) the twisted acoustic 
metamaterials with φ = 180°.  
 

Let us now consider the behavior of the individual HR. 
Since the incident wavelength is considerably long 
compared with the HR’s transverse dimensions in x-y plane, 
we can employ the well-known theory of equivalent acoustic 
circuits to model the acoustic metamaterials. For simplicity, 
we use the 2D model. Figure 1(a) shows a circuit section 
composed of standard L-C oscillating circles, and the 
repeated circuit sections will further construct an acoustic 
transmission line in x-direction. The short slit of the split 
ring acts as an inductor with acoustic mass MHR=ρ0*(a-b)/h, 
and the inner cavity acts as a capacity with acoustic 
capacitance CHR=πb2/ρ0c0

2. In all our studies, the host 
medium is chosen as water with κ0 = 2.19 GPa and ρ0 = 998 
kg/m3, and the geometry size of the resonator is set as 
a=0.48 m, b=0.34 m, h=0.05 m and d=1 m unless otherwise 
specified. To include the influence of periodicity on the 
acoustic radiation of the slit, we employ an equivalent extra 
mass radiation mass and revise the effective acoustic mass 
as Meff =ρ0(a-b+2.85h)/h. Hence the resonant frequency fR 
[=(1/MeffCHR)0.5/(2π)] of the HR is obtained to be 164 Hz, 

and the corresponding normalized frequency fRd/c0 is 0.11. 
The HR chain in x-direction could be modeled as a 1D 
transmission line with periodic loaded L-C shunt branches. 
We further give a qualitative description on the coupling 
effect from the view point of acoustic circuit. Due to the 
twisted configuration, the near-field coupling interaction 
between close-spaced slits is significant enhanced and its 
influence could be characterized as an mutual acoustic mass 
M. M takes negative value when the two HRs oscillate in-
phase since the mass loading at the outlet of the slit is 
decreased, and vice versa. Thus a coupled acoustic 
propagation mode may be established in this case and could 
be used to open a transparency window in forbidden gap, as 
illustrated below. 

3. Results and discussion 

3.1. Band structures 

To describe the coupling properties for acoustic wave 
propagating within the twisted structure, we first calculate 
the band structure of the metamaterials. The band structure 
of the composite metamaterial can be calculated by solving 
the acoustic eigenvalue problem of the supercell. The 
periodic boundary conditions are applied to the supercell 
along the x-direction and y-direction based on Bloch’s 
theorem. The finite element technique transforms the wave 
equation into a generalized acoustic eigenvalue problem 
expressed by [K(kx)-ω2M]P=0, where K(kx) and M are the 
stiffness and mass matrices. An alternative searching 
arithmetic is employed to determine the eigenfrequency ω. 
The spatial discretization is fine enough for the convergence 
in our numerical experiments. 
 

Figure 2: Band structures for (a) regular and (b) twisted 
acoustic metamaterials. The corresponding normalized 
transmission spectra are shown in panel (c). 
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The band structures for regular and twisted 
metamaterials are shown in Figs. 2(a) and 2(b), respectively. 
As a first observation, we can see one Bragg-scattering (BR) 
gap from 0.256 to 0.808 and one locally-resonant (LR) gap 
from 0.089 ~ 0.167 for regular acoustic metamaterials with 
φ = 0°. The phenomenon is consistent with previous studies 
for regular HR chain and array [14, 15, 21]. In contrast, 
although the position and width of the BR gap for twisted 
metamaterial are exactly the same as that for regular 
metamaterial, the number of transmission bands below BR 
gap is doubled. Generally, two native bands separated by 
the only LR gap exist in the frequency range below the BR 
gap for regular metamaterial [Fig. 2(a)], which originate 
from the eigen-vibration of the individual HRs. However, 
four transmission bands intersected by two LR gaps exist in 
the frequency region below the BR gap for the twisted case 
[Fig. 2(b)]. The origin of the four transmission bands could 
be ascribed to the symmetric and asymmetric combination 
of original eigen-vibration modes by the intensive coupling 
interaction, which will be discussed in the following section. 
The calculations assume that the dissipation is weak and the 
vibration amplitude is limited, hence the viscosity loss is 
not included in this case. We also take the large loss factor 
into consideration and find that the band structures change a 
little. 

In order to confirm the analysis of band structures, the 
transmission spectra through finite supercells are calculated 
using the full-wave finite element simulations. The 
computational domain is shown in the inset of Fig. 2(c). 
Bloch conditions are applied in the y-direction since the 
structure is supposed to be infinite in this direction. A plane 
wave source with the amplitude of 1 Pa is added on the left 
surface of the domain. In order to improve the accuracy of 
the numerical model, the perfect match layers are added at 
the external boundaries to simulate the infinite region. 
Sound wave transmissions through the periodic superlattice 
are calculated, as shown in Fig. 2(c). We note that the LR 
transmission gap appears at 0.089 ~ 0.167 for the case of 
regular acoustic metamaterials, which is in agreement with 
the dispersion curves [as shown in Fig. 2(a)]. On the other 
hand, the LR gaps appear at 0.060 ~ 0.121 and 0.146 ~ 
0.233 for the case of twisted acoustic metamaterials. Note 
that a narrow transparency window extends from 0.121 to 
0.146 which located between the two LR gaps [see Fig. 
2(b)]. This secondary transparency window should be 
attributed to the splitting of the dispersion curves. We also 
note that both BR gaps appear at 0.256 ~ 0.808 for the two 
cases. In general, the transmission spectra are in agreement 
with the dispersion curves. The consistency demonstrates 
the drastic effect of subwavelength coupling interaction on 
the propagation of acoustic waves. 

We continue to study the transparency window inside 
the extended LR gap through the pressure field of wave 
propagation. The edge of third dispersion curve is utilized as 
load frequency since only one eigenmode is supported in 
this case. The pressure fields at the load frequencies of 200 
Hz for the two cases are shown in Figs. 3(a) and 3(b), 
respectively. For comparison, the corresponding profile 
along the cross-section line of y=d/2 are plotted in each 

panel. Since the frequency of incident wave is inside the LR 
gap for the case of regular metamaterials, the incident wave 
could only penetrate the first few HRs and the interior field 
is nearly zero. In this case, the propagation of the wave is 
forbidden, and most of the incident energy is reflected 
backward. These results are consistent with the dispersion 
curves and transmission spectra. On contrary, the incident 
wave could effectively propagate through the superlattice for 
the case of twisted metamaterials. The variation trend of the 
absolute value of the pressure field is periodic, which can be 
determined by the periodicity of the supercell. In this case, 
the supercells exhibit unique oscillation modes in which the 
two HRs in each supercell vibrate in-phase with each other. 
Note that the pressure amplitude in the supercell region is 
significantly higher than that of the incident and transmitted 
wave. This phenomenon should be attributed to the intensive 
resonance in the HRs through coupling interaction. This 
finding should have substantial practical applications, for 
example in controlling and filtering the propagation wave 
via tuning the twisted structure. 

Figure 3: Pressure fields and the corresponding profile 
along the cross-section line of y=d/2 at the load frequency 
of 200 Hz for (a) regular and (b) twisted acoustic 
metamaterials. The red (blue) corresponds to the 
maximum (minimum) pressure. The plane wave with the 
amplitude of 1 Pa travels along the x-direction. 
 

It is interesting to note that the acoustic transparency 
window induced by coupled resonance is different from that 
induced by coupling between the rod-resonator modes [22], 
although both structures employ twisted configuration. In 
the rod-resonators with a twist angle of 45° relative to each 
other, the surface resonant modes with identical resonant 
frequencies but different quality factors respectively act as 
radiative mode and dark mode, and the destructive 
interference of them results in electromagnetically-induced-
transparency like effect. Importantly, the distance of the 
rod-resonators is much longer than the wavelength. In 
contrast, the HRs in our proposal can be deep 
subwavelength spaced, which is very compact for 
construction. The transparency is achieved through the 
cancellation of opposite contributions from the two HRs. 

3.2. Eigenmodes distributions 

In order to explore the physical mechanism causing such 
splitting of the dispersion curves illustrated in Fig. 2, we 
further investigate the recombination of acoustic vibration 
modes induced by the twisted structure. Sound waves in the 
metamaterials propagate through the particle vibrations in 
the constructive resonant microelements in subwavelength 
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scale, which can be decomposed into eigenmodes with the 
characteristic oscillation pattern. In this section, we 
characterize the eigenmodes through the pressure field 
distribution of the supercell. By assigning both the wave-
vector kx and frequency ω, the specific eigenmodes are 
excited and the pressure data at each node are recorded to 
reconstruct the eigenmodes. The eigenmodes defined at the 
zone edge below the BS gap are discussed. We have also 
investigated the other modes with k values located at general 
positions of the dispersion curves, e.g. at zone center. The 
results show that the coupling interaction maintains the 
effect of mode recombination, which are not listed in the 
paper. 

Figure 4: Pressure field distributions of the eigenmodes. 
Panels (a0) and (b0) correspond to modes A0 and B0 for the 
regular acoustic metamaterials, and panels (a1), (a2), (b1) 
and (b2) correspond to modes A1, A2, B1 and B2 for the 
twisted acoustic metamaterials. The direction (size) of the 
cones indicates the direction (magnitude) of velocity vector, 
and the red (blue) correspond to the maximum (minimum) 
pressure. 
 

Based on the mode characterization method, we first 
depict the pressure fields of the eigenmodes A0 [marked in 
Fig. 2(a)] for regular acoustic metamaterials with the twist 
angle of φ = 0° in Fig. 4(a0). In this case, the dominant 
particle motion occurs in the short neck, and the upper/lower 
region outside the resonator. The pressure distribution 
exhibits symmetric variation with respect to the mid-plane 
of the short-neck (the plane of y = d/2). Note that the 
eigenmodes are defined at the zone edge with kxd/π = 1 and 
λ = 2d, for which the adjacent unit cells move in antiphase. 

Comparing mode A0 with mode A1 and A2 for the 
twisted acoustic metamaterials with φ = 180° [see Figs. 
4(a1) and 4(a2)], an interesting observation is that the 
oscillation of the adjacent cells exhibit in both in-phase and 
out-of-phase patterns. For the case of mode A1, the left and 
right HRs exhibit in-phase vibration along the x-direction 
[Fig. 4(a1)]. As a result, the entire supercell also shows 
antisymmetric pressure field distribution with respect to the 
mid-plane along x-direction (the plane of x = d). In contrary, 
the left and right HRs vibrate out of phase for the case of 
mode A2, leading to the symmetric variation of the pressure 
field [Fig. 4(a2)]. Therefore, the twisted structure combines 
the vibration mode of standalone HR into a pair of 
asymmetric and symmetric modes, which is analogous to 
the bonding and anti-bonding magnetic plasmon modes in 
magnetic dimer [23]. Similar effect of eigenmode 
recombination is also found in other transmission band. For 
example, the mode B0 [Fig. 3(b0)] constructs the symmetric 
mode B1 [Fig. 4(b1)] and antisymmetric mode B2 [Fig. 
5(b2)]. We outline the physical mechanism which leads to 
the combination effect as follows. The hybridization of the 
acoustic response in the case of φ = 180° is mainly due to 
vibration coupling between the HRs. Each HR in deep 
subwavelength scale can be viewed as a quasi-atom, and the 
supercell of the coupled metamaterial with φ = 180° can be 
regarded as a quasi-molecule. The quasi-atom possesses 
strong polarity caused by its nonaxisymmetrical structure, 
and the local amplitude at the short neck may be extremely 
high. For regular metamaterial with φ = 0°, the polar axes of 
all of the HRs lie in the same direction, and the interactions 
between adjacent cells are so weak that the periodic cells 
vibrate in-phase independently [as shown in Fig. 3(a)]. On 
contrary, for twisted metamaterial with φ = 180°, the polar 
axes of the two HRs in the quasi-molecule lie in opposite 
direction, and the significantly enhanced interaction couples 
the left and right HRs without obvious modification to their 
standalone eigenmodes. The decoupled eigenmode A0 can 
combine in symmetric and asymmetric manners, leading to 
the splitting of the dispersion relations (e.g. the two 
transmission bands for regular acoustic metamaterials with 
φ = 0° below the BR gap split into four transmission bands 
for twisted metamaterials with φ = 180° as illustrated in Fig. 
2). In general, the splitting of the dispersion curves 
originates from the hybridization of the original decoupled 
modes with small frequency offset. 

3.3. Evolution of coupling effect with the lattice constant 

As illustrated above, the coupling interaction is crucial in the 
hybridization effect of the transmission bands. The strength 
of the coupling interaction depends strongly on the distance 
between the quasi-atoms and for the considered geometry 
can be tuned by changing the lattice constant d. Therefore, 
we investigate the band structure with the lattice constant 
ranging from d = 0 to 1.6 m. The evolution of bandgap 
extent is extracted from the band structures and illustrated as 
a function of the lattice constant d in Fig. 5, where panels (a) 
and (b) correspond to the regular acoustic metamaterials 
with φ = 0° and twisted acoustic metamaterials with φ = 
180°, respectively. It is found that the sensitivity of the 
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bandgaps to the lattice constant is different. Three remarks 
should be noted. (1) Both BS gaps for the two cases 
(bounded by curves with blue open squares and blue open 
circles) gradually shrink in the same trend and the midgap 
frequencies move downward. Its upper (lower) band-edge 
frequency decreases from 0.80 (0.26) to 0.37 (0.23) when 
the lattice constant d is increased from 1 m to 1.6 m. This 
phenomenon, which is analogous to the BS gap in phononic-
crystals composed of solid cylinders periodically arranged in 
the background of fluid, should be attributed to the fact that 
the periodicity of the scatterer has to be of the same length-
scale as half the wavelength of the sound waves. (2) The 
width of the LR gap for the case of regular metamaterial also 
gradually shrinks. However, its midgap frequency 
eventually approaches 0.12, which is almost unchanged and 
equals the resonant frequency of the individual HR. (3) For 
the case of twisted metamaterial, similar dependence on the 
lattice constant is also observed in both the first and the 
second LR gap. In addition, the transparency window 
between the two LR gaps also depends on the lattice 
constant. Its upper edge frequency (indicated by curve with 
red solid up-triangles and) first slightly increases from 0.15 
at d = 1 m to 0.16 at d = 1.1 m and then decreases to 0.13 at 
d = 1.6 m. Meanwhile, its lower edge frequency (indicated 
by curve with black solid circles) maintains the value of 0.12 
which is almost unchanged.  

Figure 5: Complete phononic band gap extent as a function 
of the lattice constant for (a) regular and (b) the twisted 
acoustic metamaterials. The corresponding normalized 
transmission spectra are plotted in panels (c) and (d), 
respectively. 
 

To confirm the bandgap extent in Figs. 5(a) and 5(b), 
the transmission spectra maps with the variation of the 

lattice constant are shown in Figs. 5(c) and (d). It is found 
that the location and width of transmission gaps agree with 
the band structures. In addition, the transparency window 
lies within the frequency region defined by the transmission 
bands of the infinite system. From above observations, we 
can conclude that the strength of the coupling interaction 
depends strongly on the lattice constant, which performs as 
a key factor in engineering the band gap and acoustic 
transparency window. 

4. Conclusions 

In conclusion, we have studied the coupled resonant modes 
in acoustic metamaterials composed of single-slit 
Helmholtz resonators with twist angle between adjacent 
cells. The coupling effects are demonstrated by the 
consistent band structures and transmission spectra, in 
which doubled dispersion curves and a sharp transparency 
window in the extended LR gap are observed. Due to the 
resonance interaction, eigen-vibration mode of individual 
HR recombined into a pair of symmetric coupled mode in 
in-phase oscillation and anti-symmetric coupled mode in 
out-of-phase oscillation. By adjusting the coupling strength 
which strongly depends on the separation distance 
determined by the lattice constant, transmission and modes 
of an acoustic metamaterial are highly tunable. Thus, the 
coupled resonant modes, introduced by twisting the 
orientation of resonators in acoustic metamaterial, may 
provide a new way of tailoring their acoustic properties. 
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