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Abstract 
The Pendry et al. field averaging method for calculation 

of effective material parameters is reviewed and its limits 
explored. The method is then extended so that it can 
accurately calculate the effective material parameters of 
lattices where the unit cell size is appreciable but still 
quasistatic ( ~d 01.0 λ ). The new algorithm is verified by 
calculating the effective material properties of periodically 
placed particles suspended in free space, as the unit cell size 
becomes appreciable. Results of our proposed formulation 
are then compared with the Pendry et al. and conventional 
volumetric averaging algorithms. 

 
1. Introduction 

 
Artificial materials for electromagnetic and optical 

applications typically consist of lattices of dielectric or metal 
inclusions of various shapes and sizes [1]. Many inclusion 
geometries such as dielectric spheres, metal cylinders, swiss 
rolls, and split-ring resonators have been investigated for 
their unique electromagnetic behaviors. Successful use of 
these materials hinges on the accurate calculation of the 
effective permittivity effε  and permeability effμ of the 
material. 

The effective parameters of lattices can be calculated 
using a plurality of methods that have been proposed over 
the years (see, e.g., [2-5]). In the quasistatic regime, when 
the size d  of the unit cell of a lattice is small compared to 
the operating wavelength, λ<<d , and the inclusion volume 
is small, it is possible to calculate the effective permittivity 
and permeability of the lattices based on the Maxwell 
Garnett formula [6]. However, beyond the quasistatic regime 
and for high inclusion volume geometries one has to use 
more sophisticated approaches. 

One often used method to compute effective material 
parameters both in the lab and from computational data is to 
equate the scattering parameters of a plane wave incident on 
a finite thickness slab to the scattering parameters of an 
equivalent transmission line problem [7]. In the lab, free 
space measurement systems are used to measure such 
scattering parameters and computationally such problems 
can be solved trivially. However, contemporary work on 
artificial materials has focused on periodic materials that 
have lattice constants that are in the 005.0 λ  to 04.0 λ  range 
and are only a few layers thick in the direction of wave 
propagation. Calculation of effective material parameters 
from such geometries using transmission line equivalent 

problems is very difficult at best. As identified by others, 
periodic materials cannot be exactly modeled by a single 
section of homogeneous transmission line [8,9]. Near the 
edges of a finite thickness slab the truncation of the lattices 
cause the particles near the truncation to polarize differently 
than those in an infinite lattice. This edge effect results in 
both spatially varying and inherently anisotropic material 
parameters near the edge of the slab. To mitigate the effect 
this problem has on the calculated effective material 
problems one could create a finite thickness slab that is 
many cells thick in an attempt to average out the edge effect. 
However, this does not completely eliminate the error 
caused by the only approximate transmission line model and 
results in an unknown and unpredictable amount of inherent 
error in the calculated effective material parameters.  

To avoid the inherent error of transmission line models, 
we instead chose to investigate methods of calculating 
effective materials using only the information contained 
within a single unit cell away from the lattice edges where 
the local electromagnetic behavior is nearly identical to that 
of the behavior of an infinite lattice. One particularly 
appealing method in the literature is proposed by Pendry 
et al. [5]. In the proposed method, effective material 
parameters of periodic materials are calculated using only 
the local , , E D H , and B  fields averaged over unit cells. 
The average values of D  and  fields are defined as 
surface integrals of the local field values while the averages 
of and 

B

E H  fields are defined as line integrals of the local 
fields. These local fields can be obtained by numerically 
solving the corresponding boundary-value problem for 
Maxwell’s equations with an appropriate solver. 

Though this approach has been previously reported to 
give good results for lattices of some types, the proposers of 
the Pendry et al. method have identified two serious 
problems with the method [10,11]. First, it is only rigorously 
valid in the quasistatic limit and returns increasingly 
inaccurate material parameters as the size of the unit cell 
increases. Second, beyond the quasistatic limit it returns 
complex material parameters for lossless problems. 

To eliminate these problems, we are proposing a 
modification to the Pendry et al. method. Our modification 
is based on using surface averages instead of line averages 
for the definition of the averaged electric and magnetic 
fields. 

In this paper, we first briefly discuss the Pendry et al. 
method and its limitations. Next our modification to the 
Pendry et al. method is described and how it is applied. We 
then apply the Pendry et al. method, our proposed modified 



method, and the conventional volume averaging method to 
three periodic materials consisting of (a) free space, (b) 
dielectric spheres, and (c) dielectric cubes. Lastly, we report 
the accuracy of the Pendry et al. method and our proposed 
modified method. 

 
2. Pendry et al. and modified averaging methods 

 
According to Pendry et al., the effective permittivity and 

permeability tensors of a lattice of inclusions can be 
calculated as [10,11] 

 ( )
Lj

Si
ij E

D
≡effε , ( )

Lj

Si
ij H

B
≡effμ  (1) 

where  is the th component of the respective field 

( ) and the averages 
iF i

BHDEF ,,,=
SiF , 

LiF  are defined 
as surface and line integrals 
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S

iSi dSF
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 ∫≡
L

iLi dLF
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with specific integration surface S  and integration path . 
The latter is designated along one of the edges of the unit 
cell and the surface S  is designated as one of the cell’s 
faces as illustrated in Fig. 1. 
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Figure 1: The integration surface S  and integration path 
 used in Eqs. (2)-(3) to calculate the average values of L

z -components of the fields. For x - and -components, 
both the line L  and the surface normal n  must be in the 
respective directions. 

y

 
Eqs. (1)-(3) play a central role in the Pendry et al. 

averaging method. They define how to calculate the 
effective permittivity and permeability tensors effε  and effμ  
if the local distributions of all the fields , , E D H , and B  
are known. The distributions of E  and H  fields can be 
obtained by numerically solving the respective boundary 
value problem with a full wave solver. The distributions of 

 and  fields can then be calculated from those of E  
and 
D B

H  fields by using the constitutive relations 
 ED rεε0= , HB rμμ0= , 

with  F/m and  H/m being 
the permittivity and permeability of free space and 
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rε  and 

rμ  are the local relative permittivity and permeability 
within the unit cell. 

Note the following advantages of the Pendry et al. 
method: 
i) it only utilizes local field information and thus 

simulations can be created that have little or negligible 
edge effect problems; 

ii) the field quantities used in the method can be easily 
calculated using an appropriate commercial software. 
However, the Pendry et al. method also has the following 

limitation: it is only correct, strictly speaking, in the 
quasistatic case. For lattices with an appreciable unit cell 
size, it provides a poor description of their effective 
parameters [10,11]. 

As an illustration, we calculated, based on Eqs. (1)-(3), 
the effective parameters of a lattice of empty cells with non-
negligible unit cell size when compared to the wavelength of 
the incident wave. The local field data sets used in Eqs. (2)-
(3) were obtained from CST Microwave Studio Suite by 
simulating the propagation of a plane wave incident 
normally onto a slab of free space. The slab was split into 
simple cubic cells (SCCs) of cell size d . The total thickness 
of the slab was 9 unit cells and the necessary field 
calculations were performed on the unit cell at the center of 
the slab. The time domain solver was used to calculate the 
numerical results and was set to terminate after the energy of 
the system had run down to -80 dB. Automatic meshing of 
the geometry was set to 50 lines per wavelength 
(convergence of this and the geometries discussed later in 
this paper were verified but are not shown here). Once 
calculated, post processing templates within the software 
were used to calculate the necessary line and surface 
averages. Ratios of the averaged quantities were finally used 
to calculate the effective material parameters. The 
calculation results for both the real and imaginary parts of 
the relative values 0eff eff, /εεε ≡r  and 0eff eff, /μμμ ≡r  of 

effε  and effμ  as functions of the unit cell size are presented 
in Fig. 2 (red dashed curves). 

As seen from Fig. 2(a), the calculated values of the real 
parts rr  eff, eff, Reεε ≡′  and rr  eff, eff, Reμμ ≡′  progressively 
diverge away from the value 1=′=′ rr με  of free space as the 
unit cell size increases from 0/ 0 =λd  to approx. 0.7 and 
then converges in an oscillating manner to a final value of 

0eff,eff, =′=′  r r με . A similar oscillating behavior is observed 
for the imaginary parts rr  eff, eff, Imεε ≡′′  and rr  eff, eff, Imμμ ≡′′ , 
as seen in Fig. 2(b). Conversely, and purely coincidentally 
because of the loss free geometry, the final value of  
calculated r eff,ε ′′  and r eff,μ ′′  coincides with the true value 

0=′′=′′ rr με  for vacuum. 
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Figure 2: Computed (a) real and (b) imaginary parts of 
the relative effective permittivity and permeability of free 
space considered as a lattice of empty cells. 

 
Dependence of the error in the real part of the computed 

permittivity value 0eff0 /)( εεε ′−≡Δ  on the unit cell size d  
is presented in Fig. 3. As seen from the plot, even at 

2.0/ 0 =λd , where one might expect the Pendry et al. 
method to give quite satisfactory results, the calculated value 
of effε ′  of free space contains an error approximately 25%. 

Unit cell size d/λ0

0.00 0.05 0.10 0.15 0.20 0.25

E
rr

or
 (%

)

0

5

10

15

20

25

30

 

Figure 3: The error in the effective permittivity of free 
space computed by Pendry et al. method. 
 

The discrepancy between the calculated and true values 
of effε , effμ  of free space has been explained [10,11] as 
caused by the spatial variation of the electric and magnetic 
fields of the incident wave over large enough unit cells. Due 
to this variation, the effective parameters of free space 
calculated from Eqs. (1)-(3) become [10] 

(a) 

 
ikd
ikd 1)exp(

0eff
−

= εε , 
ikd
ikd 1)exp(

0eff
−

= μμ , (4) 

with their real parts [11] 

 
kd

kd)sin(
0eff εε =′ , 

kd
kd)sin(

0eff μμ =′ , (5) 

and imaginary parts 

 
kd

kd)cos(1
0eff

−
=′′ εε , 

kd
kd)cos(1

0eff
−

=′′ μμ , (6) 
(b) where  is the wave number of the incident wave 

propagating along one of the lattice’s axis. The oscillating 
behavior of both the real and imaginary parts of 

k

effε  and 

effμ  as functions of the unit cell size d , which is predicted 
by analytical expressions (5)-(6), is exactly what is observed 
in our numerical results shown in Fig. 2. 

It should be mentioned that the calculation of effε  and 

effμ  of a lattice of empty cells was performed, within the 
Pendry et al. averaging method, for the first time in [10] and 
then repeated in [11]. However, the expressions (6) for the 
imaginary parts effε ′′ , effμ ′′  are not given explicitly in either 
of these works. 

Formally, the difference between ) ,( effeff με  and 
) ,( 00 με  is due to the oscillating factors appearing in Eqs. 

(4)-(6). To match the values of ) ,( effeff με  calculated by the 
Pendry et al. method to the values ) ,( 00 με  of free space, it 
has been proposed [10,11] to simply remove the respective 
phase factors )/(]1)[exp( ikdikd − or  from Eqs. 
(4)-(5). However, such “handmade correction” is valid for 
only the case of empty cells considered here. For the general 
case of non-empty cells with arbitrary inclusions it is still 
not clear what is the “phase factor” that has to be eliminated 
from the calculation results to obtain correct values of 

)/()sin( kdkd

effε , 

effμ . 
Since at large enough λ/d  values the line integral 

definition (3) for the average E  and H  fields cannot take 
into account the phase variation of the fields over the unit 
cells in the direction of wave propagation, we propose to 
modify the Pendry et al. method in order to automatically 
account for the variation. Namely, we propose the use of 
surface averages for E  and H  fields instead of the line 
averages (3). Accordingly, Eqs. (1) are replaced by 

 

 ( )
Sj

Si
ij E

D

′

≡effε , (7) 

 ( )
Sj

Si
ij H

B

′

≡effμ , (8) 
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where the surface averages SjE ′ , SjH ′  are calculated 

similarly to Eq. (2) but now over the surface S  selected as 
explained in Fig. 4. Note that our modified definitions for 
the averages of E  and 

′

H  in Eqs. (7)-(8) do not compute 
the average value normal to the plane as used in the 
definitions for the average electric or magnetic flux 
densities. Rather, it calculates the average tangential value in 
the i th direction over the plane S ′ . 

 

 
 

Figure 4: The integration surface S  used in Eqs. (7)-(8) 
to calculate the average values of 

′
z -components of E  

and H  fields. For the other two components, surface S ′  
is defined by the respective axis and the wave vector k  
of the incident wave. 

 
Our approach can be proven rigorously [12] in the static 

approximation based on conventional volumetric averaging 
[13] 

 ( )
Vj

Vi
ij E

D
≡effε , 

 ( )
Vj

Vi
ij H

B
≡effμ , 

 ∫∫∫≡
V

iVi dVF
V

F 1 , 

(V  is the entire volume of the unit cell under investigation) 
and first principles—the general properties of the static 
electric and magnetic fields as described by Maxwell’s 
integral equations 
 0=⋅∫

C

dlE , 

 JlH =⋅∫
C

d , 

 freeQd
S

=⋅∫∫ SD , 

 0=⋅∫∫
S

dSB , 

(  and  being the current density and total free charge 
enclosed by the contour C  and surface S , respectively) as 
well as periodicity of all the fields in an infinite lattice. 
Moreover, in the static limit our proposed method turns to be 
identical to the Pendry et al. method due to [12] 

J freeQ

SiLi EE
′

= , 

SiLi HH
′

= . 
However, as the unit cell size increases, our approach 
provides more accurate results for lattices of larger unit cell 
size in the region of 0/λd  values where the Pendry et al. 
method fails. 

To illustrate the advantages of our modified method, we 
first calculated, based on Eqs. (7)-(8), the effective 
parameters of free space. The results are presented in Fig. 2 
by the blue solid curves. As seen from Fig. 2, our approach 
returns correct results for effε  and effμ  of free space 
regardless of the unit cell size. Such perfect agreement 
between these calculated and theoretical results is a unique 
case and will not generalize to any other unit cell geometry. 
Generally, our proposed method will give only approximate 
values of the effective parameters, but far more accurate 
than the Pendry et al. method. 

Lastly, the very concept of the effective parameters is 
questionably applicable to lattices with unit cells that are of 
the order of the wavelength of incident waves. Therefore, as 
the unit cell size becomes too large it should be expected 
that our averaging method will also fail. 

 
3. Numerical results and discussion 

 
To further investigate the validity of our proposed method, 
we have applied it to simple cubic lattices of dielectric 
spheres and cubes. For comparison, we have also 
implemented the Pendry et al. method as well as the 
rigorous volume averaging method. While volume averaging 
as defined above may appear to be an appealing method, it 
becomes very difficult to implement once highly conducting 
materials are added to the unit cell design due to the 
polarization of the conducting object. However, since we are 
only dealing with dielectric materials here it provides highly 
accurate data to compare with our proposed method. 
 
3.1. Dielectric spheres 

A simple cubic lattice of dielectric spheres with a volume 
fill factor of 0.3 and relative permittivity of 8 was modeled 
and its effective permittivity was computed. The real and 
imaginary components of the effective permittivity are 
shown in Fig. 5. As seen from the data, our proposed 
method returns nearly identical effective permittivity 
parameters as the volume averaging method up to a unit cell 
size of 0.3 free space wavelengths. In contrast, the Pendry et 
al. method immediately diverges away. To quantify the 
divergence of both our proposed method and the Pendry et 
al. method away from the volume averaging method, we 
have computed the difference between the computations and 
normalized the resulting difference to that of the volume 
averaging method, VV  eff,eff eff, /)( εεε −≡Δ . This divergence 
is shown in Fig. 6 and is plotted in percent. As seen from the 
plot, the Pendry et al. method incurs significant error (up to 
approx. 210% at 3.0/ 0 =λd ) while our proposed method 
incurs little error. 

4 
 



Unit cell size d/λ0

0.0 0.1 0.2 0.3 0.4

R
e(
ε e

ff,
 r 

)

-2

0

2

4

6
Pendry et al. method
Our proposed method
Conventional method, volumetric averaging

 

Unit cell size d/λ0

0.0 0.1 0.2 0.3 0.4

Im
(ε

ef
f, 

r )

-4

-3

-2

-1

0

1

2
Pendry et al. method
Our proposed method
Conventional method, volumetric averaging

 
 

Figure 5: Computed (a) real and (b) imaginary parts of 
the relative effective permittivity of periodic material 
consisting of dielectric spheres of 8=rε  at a fill factor 
of 0.3 vs. normalized unit cell size of the material. 
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Figure 6: Difference between Pendry et al. method or our 
proposed method from the volume averaging method. 

 
Note that the values of effε , effμ  computed by using the 

Pendry et al. method are complex even in cases of lossless 

inclusions such as those presented here. This is due first to 
the peculiarities of the Pendry et al. method itself and  
second the complex representation of the local 
electromagnetic fields provided by CST Microwave Studio 
Suite [which uses an )exp( tjω time convention] or any other 
electrodynamic solver. Within the Pendry et al. method, one 
might avoid the appearance of nonzero imaginary parts of 
the effective parameters of lossless lattices by using a real-
valued representation of all the fields. However, such an 
approach cannot be exploited in numerical calculations if 
complex values of the local fields provided by eigensolvers 
by default are used to calculate the average fields. 

(a) 

To avoid the appearance of nonzero imaginary parts of 
numerically calculated effective parameters of lossless 
lattices, Smith and Pendry proposed [11] to calculate the 
field averages at two phases of the incident wave  90º apart. 
This correction to the initial Pendry et al. method allows one 
to obtain plausible results on effε ′′ , effμ ′′ . Comparatively, our 
modified method yields correct values 0eff =′′ε , 0eff =′′μ  
from complex local fields automatically, see Fig. 5(b), 
without invoking any additional correction procedures. 

(b) 

 
3.2. Dielectric cubes 

A simple cubic lattice of dielectric cubes with a volume 
fill factor of 0.4 and relative permittivity of 8 was modeled 
and its effective permittivity was computed. The real and 
imaginary components of the effective permittivity are 
shown in Fig. 7. 
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Figure 7: Computed (a) real and (b) imaginary parts of 
the relative effective permittivity of periodic material 
consisting of dielectric cubes of 8=rε  at a fill factor of 
0.4 vs. normalized unit cell size. 

(a)

(b)
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As seen from the data, our proposed method returns 
effective permittivity parameters that are very close to those 
returned by the volume averaging method. In contrast, the 
Pendry et al. method immediately diverges away. The 
divergence of both our proposed method and the Pendry 
et al. method away from the volume averaging method is 
shown in Fig. 8 and is plotted in percent. As seen from the 
plot, until a unit cell size of 0.35 wavelengths our proposed 
method incurs approximately 5% error or less. Com-
paratively, the Pendry et al. method incurs more than 5% 
error after a unit cell size of just 0.013 0λ . 
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Figure 8: Difference between Pendry et al. method or our 
proposed method from the volume averaging method. 

 
 

4. Conclusions 
 
Our proposed modification to the averaging method of 

Pendry et al. allows one to calculate the effective material 
parameters of lattices of particles to a much higher degree of 
accuracy for the case of appreciable unit cell size. For small 
unit cell sizes, 0λ<<d , our proposed method returns 
identical results to that of the Pendry et al. method as well as 
the conventional volume averaging method. For the 
intermediate region 3.0/02.0 0 << λd , our method provides 
more favorable results than the Pendry et al. method. Our 
quantification of the error of the calculated effective 
material parameters of cube and sphere media show that the 
Pendry et al. method incurs 5% or more error for 

02.0/ 0 >λd . Comparatively, our proposed method incurs 
more than 5% error for a much larger value 35.0/ 0 >λd . 
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