
 META’12 CONFERENCE, 19 – 22 APRIL 2012, PARIS - FRANCE

  

Exotic Properties and Potential Applications of Quantum 
Metamaterials 

 
Romain Fleury1, and Andrea Alù 1* 

 
1Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA 

*corresponding author, E-mail: alu@mail.utexas.edu 
 
 

Abstract 

We discuss here potential venues for applications and exotic 
features of quantum metamaterials. We explore the 
coupling of conventional electromagnetic metamaterials 
with quantum emitters and the wave properties of quantum 
metamaterials obtained by tailoring their effective band 
structure. We discuss anomalous enhancement effects in the 
quantum emission properties of individual and collections 
of small emitters in the presence of metamaterials, as well 
as matter-wave cloaking and anomalous tunneling 
phenomena for quantum mechanical waves in artificial 
materials with exotic band structures. 

1. Introduction 

The field of metamaterials and plasmonic materials has 
evolved tremendously in the past few years, expanding into 
a variety of novel fields and disciplines. Initially based on 
purely classical concepts, the trend of the last few years has 
been to consider smaller and more closely spaced 
nanoparticles, forcing scientists to consider quantum effects 
for the proper modeling of metamaterials [1]-[2], in 
particular for shorter wavelengths in fields like optics and 
plasmonics. In addition, combination of metamaterials with 
quantum sources and small optical emitters has 
tremendously expanded, together with the application of 
optical antennas for which quantum emitters may represent 
efficient localized power sources [3]. The field of 
metamaterials is currently mature to include quantum 
effects, also tailoring the effective band structure of 
composite materials to produce anomalous propagation 
properties for matter waves. In this paper, we theoretically 
discuss potential applications of quantum metamaterials, 
considering the coupling of small quantum sources with 
electromagnetic systems, and the tailoring of band structure 
to produce anomalous quantum effects.  

As a first example of our investigations in this area, inspired 
by electromagnetic metamaterials, we discuss how low-
constitutive parameters [4]-[8], compared to those available 
in nature, may be especially attractive to modify the 
quantum emission properties of small sources. Zero-
permittivity (ENZ) metamaterial channels have been 
proposed to increase the spontaneous emission of small 
optical sources within a purely classical analysis [9]. We 

discuss here how these effects may be even more dramatic 
than what predicted based on purely classical mechanisms, 
including the effects of quantum super-radiance in systems 
that have a large physical area, but a small electrical size, 
due to the large phase velocity of the modes supported in an 
ENZ channel. 

In addition, we discuss how, by modifying the effective 
band structure of metamaterials, we may be able to translate 
and extend established metamaterial effects to matter waves. 
ENZ tunneling and plasmonic cloaking will be discussed for 
matter waves, analyzing the potentials of these effects when 
translated into the quantum arena. To this end, transmission-
line modeling of wave propagation in quantum 
metamaterials will be applied to anomalous constitutive 
parameters and composite systems, showing that the tools 
successfully used in conventional metamaterials may be 
theoretically extended also in the area of quantum 
metamaterials. 

2. Quantum Metamaterials 

Metamaterials are artificial materials characterized by a 
wave interaction not commonly available in nature. They 
have been mostly applied to electromagnetic and acoustic 
waves, but recent interest in the extension and application 
of these concepts to matter waves has been explored in a 
variety of scenarios. A design mimicking the Veselago’s 
lens in optics has been proposed for matter waves, 
exploiting an electron focusing effect across a p-n junction 
in graphene [10]. Total transmission of cold Rubidium 
atoms through an array of sub-De Broglie wavelength slits 
has been theoretically demonstrated in [11]. Semiconductor 
heterostructures have been exploited to predict total 
transmission for electrons in a layered 1D quantum 
metamaterial [12]. Cloaking of matter waves using an 
invariant transformation of the Schrödinger equation has 
been theoretically demonstrated in [13]. 
In the case of periodic arrays, which make the vast majority 
of metamaterial geometries, at frequencies such that the 
wavelength is long compared to the periodicity of the 
metamaterial, the equations governing the wave propagation 
can be homogenized and effective constitutive parameters 
may be defined. By carefully designing the sub-wavelength 
periodic structure of the medium, materials with anomalous 
values of constitutive parameters may be engineered. 
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Metamaterials are therefore associated with exotic 
properties, not directly available in nature, like negative 
refraction, extreme parameters, fast or slow waves, and 
extraordinary tunneling. These properties make them 
particularly interesting for a wide range of applications 
including far-field imaging, sensing and cloaking. In this 
section we discuss how these concepts may be applied to 
matter waves and to electromagnetic waves interacting with 
quantum systems, both aspects belonging to the general area 
of quantum metamaterials (QMM), whose properties cannot 
be described within classical concepts. 

2.1. Classification and general discussion 

2.1.1. Type I quantum metamaterials 

As a first type of QMM, we will consider quantum systems 
embedded in a conventional electromagnetic metamaterial, 
and strongly coupled to it. Here the quantum nature is 
brought by the quantum system, which for example may be 
represented by quantum dots and/or quantum wells. The 
fundamental idea behind type I QMM is that metamaterials 
can be exploited to dramatically enhance quantum effects. 
An example of type 1 QMM would be a system of quantum 
emitters radiating in an electromagnetic metamaterial. We 
will treat this type of QMM in section 3 of this paper, and 
show that very peculiar properties can be achieved when 
including quantum effects in the classical electrodynamic 
theory of metamaterials. 

2.1.2. Type II quantum metamaterials 

The second type of quantum metamaterial (type II QMM) 
consists of an artificial medium supporting quantum or 
matter waves. In order to further illustrate this concept, let’s 
review how the motion of particles can be described by a 
wave equation with effective parameters. The time-
independent Schrödinger equation for a particle can be 
written as 
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where we have assumed that the potential energy may be 
split into a periodic part ( )cV r


 and a non-periodic part  

( )U r


, which is assumed to be slowly varying on the scale 

of the lattice constant. 0H  represents the part of the full 

Hamiltonian that commutes with all the translation 
operators constructed from a lattice vector. By virtue of 
Bloch’s theorem, it is possible to find a basis of common 
eigenvectors of 0H  and all the lattice translation operators. 

We denote this basis of Bloch’s functions as 
. ( )ik r

nk nk
e u r 
 

 


, where ( )
nk

u r


 has the lattice periodicity, 

and we use it to expand the solution  of the full 
Schrödinger equation (1) as 

 
,
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It can be shown [14] that around a maximum or minimum 
in the band diagram, within the single band approximation 

and assuming that the strength of the potential is small 
compared with the fundamental bandgap, one term in the 
expansion (2) is dominant and the solution of equation (1) is 
in first approximation 
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( )F r


is the envelope function and satisfies the single-band 

effective mass equation: 
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where 0cE is the energy at the extremum, and the effective 

mass tensor is defined as: 
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If the potential energy changes very rapidly (for example, in 
a heterojunction between two direct band-gap 
semiconductors), the theory presented above is still valid if 
one considers the boundary condition [15]: 
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We see that all the effects from the periodic potential are 
absorbed into the effective-mass parameter. Considering the 
external potential U as a medium parameter (i.e., the 
energy difference at the band edge), we may consider the 
material to be an effective homogeneous medium for the 
envelope of the quantum particle. This justifies the term 
‘quantum metamaterial’. 
Examples of type II QMM, for which the single band 
effective mass approximation is valid, include conduction 
electrons in direct band gap semiconductors operated close 
to their  point, or cold atoms in an optical lattice. The 
analogy between type II QMM and electromagnetic or 
acoustic metamaterials make them particularly suitable for 
translating and exploiting the most exotic effects discovered 
in these fields to matter waves. We will discuss specific 
examples of type II QMM in sections 4 and 5. 

3. Boosting quantum super-radiance in an epsilon-
near-zero medium 

As example of type I QMM we will consider the emission 
properties of a system of identical 2-level quantum emitters 
in a metamaterial with extremely low value of effective 
permittivity. Consider a non-magnetic background medium 
with effective permittivity   in which we embed a system of 
N identical 2-level quantum emitters, radiating at frequency 

0 , for instance quantum dots or atoms. We note 0N the 

concentration of emitters, and d the off-diagonal matrix 
element of the dipole moment operator (chosen to be real). 
We will assume that at 0t   all the 2-levels atoms are in 
their excited state. All the emitters are therefore expected to 
spontaneously radiate as a result of the interaction with the 
quantum fluctuations of the electric field. The background is 
considered as a classical metamaterial in which one can 
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achieve anomalous values of permittivity at the emission 
frequency of the 2-level atoms.  
As was first pointed out by Dicke in his original paper [16] 
about coherent super-radiance, the independence of the 
spontaneous decay of several identical atoms is a wild 
assumption, and a more accurate description of the problem 
leads to quite different results. Interestingly, the interaction 
of the atoms through their radiation electromagnetic fields 
results in correlation between the atomic dipole moments, 
leading to the formation of macroscopic polarization, the 
latter being proportional to the total number of atoms in the 
system N . As a consequence, the total radiation intensity is 
considerably enhanced, and the spontaneous decay time is 
shortened. We shall now describe this effect more 
quantitatively, and explain how it can be further enhanced 
by decreasing the permittivity  of the medium. 

3.1. Model  

To address the effect of the permittivity of the medium on 
the radiative properties of our quantum metamaterial we 
exploit a semi-classical model of super-radiance. This model 
is suitable for describing systems whose size exceeds the 
emission wavelength. We briefly review the basic 
assumptions of this model: we will assume that the system is 
a rectangular box whose size is smaller than the Arecchi-
Courtens length (critical length beyond which the system 
splits up to several incoherent super-radiating segments) 
[17]. The system is opened at both ends along the x axis. In 
addition, we assume that all physical quantities depend only 
on one spatial coordinate x  and that the quantum dipole 
moments and electric fields are polarized along 
the y direction. This simple model has been proven to 

describe with excellent accuracy experimentally measured 
super-radiant pulses [18]. 
The semi-classical approach that we follow combines the 
quantum mechanical treatment of the 2-level system with 
the classical treatment of the radiation field. His main result 
is the dimensionless Maxwell-Bloch non-linear PDE 
equations system [19] 
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where Z is the population difference or inversion, R is the 
envelope of the non-diagonal element of the local average of 
the density matrix, which is linked with the local 
polarization of the medium, E is the normalized electric 
field,  is the normalized coordinate x and ' is the 

normalized retarded time 

 '     (10) 

where  is the normalized time. The way that these 
quantities are normalized is of crucial importance to 

determine the scaling properties of super-radiance and the 
effect of the background permittivity. We have 
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where e is the electric field. The frequency 0 gives 

information on the characteristic time of super-radiance 
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The characteristic length 0x is the above-mentioned Arecchi-

Courtens length which is given by: 

 
0

0

c
x 


 (13) 

where c is the phase velocity of light in the considered 
medium. Note than this length does not depend on the 
permittivity of the background medium. This implies that it 
is not possible to extend the spatial range of super-radiance 
by tailoring  . This is simply related to the fact that when 
two emitters are separated by more than 0x , they cannot 

interact through their radiation field because the 
electromagnetic interaction cannot go faster than the speed 
of light in vacuum. As a consequence, they belong to two 
different uncorrelated super radiating segments. We 
therefore restrict ourselves to a single super-radiating 
segment by requiring that the system be smaller than 0x . 

The normalization constant for the electric field is: 

 0
0

i
e

d


  (14) 

 The method for solving this system of equation has first 
been proposed by Burnham and Chiao when modeling the 
coherent resonant fluorescence excited by a short light pulse 
[20]. We consider the auto-modeling solution of the 
Maxwell-Bloch equation, and numerically solve the 
resulting differential equation with the appropriate boundary 
conditions. This yields the magnitude of the electric field as 
a function of x and t. From its value, we can compute the 
radiation intensity (number of photons per unit time radiated 
through one end of the system).  
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Figure 1: Output intensity versus time for different 
concentrations of emitters. The relative permittivity of the 
background medium is 1. 

3.2. Results 

In order to highlight the exotic features of our quantum 
metamaterial we plot in Fig. 1 the number of emitted 
photons versus time for different values of total number of 
emitters. Fig. 2 compares the output intensity for different 
values of the background permittivity. The energy levels of 
the identical quantum emitters are assumed to be separated 
by 3.1 eV, the dipole moment d  is chosen to be 2910 C.m, 
and the cross-sectional area of the system used in the 
intensity calculations is 4000 nm2. We notice that the 
maximum peak value is proportional to 2N . This is the 
dramatic effect of interaction between the emitters through 
their common radiation field. One would indeed expect the 
output intensity to be proportional to N  if the sources were 
independent. We also see that the super-radiance 
characteristic time is inversely proportional to the total 
number of atoms in the system. This suggests that the 
radiation decay time can be extremely short for sufficiently 
dense media. 

The effect of decreasing the permittivity is also dramatic: 
both radiation intensity and characteristic time are roughly 

inversely proportional to  . This suggests the use of 
metamaterials as background media in order to achieve very 
low values of permittivity and further enhance both the 
maximum output intensity and the radiation time. 
In summary, this very simple model predicts a significant 
boosting of spontaneous emission in quantum metamaterials 
made of confined identical quantum emitters in an ENZ 
background. This result is significantly larger than what 
predicted in [9] adopting a purely classical analysis. 
 

Figure 2: Output intensity versus time for different value of 
the relative permittivity of the background medium, for 100 
emitters. 
 

4. Plasmonic cloaking of matter waves 

As an example of a potential application of type-II QMM, 
we investigate the possibility of cloaking matter waves by 
cancelling the scattering cross-section of a given potential 
profile. 

4.1. Preliminaries 

Cloaking of matter waves has been theoretically predicted 
for spherical systems with given potential energy and 
effective mass, by considering an invariant transformation of 
the Schrödinger equation [13]. Here, we take a different 
approach, similar to what has been done in the field of 
plasmonic cloaking. Similar to what proposed for 
electromagnetic [21] and acoustic waves [22], the idea is to 
exploit the scattering cancellation based on the negative 
local polarizability of a cover made of low-permittivity or 
low-density metamaterial. The purpose of this cover is to 
cancel the dominant scattering terms in the multipole 
expansion of the scattered fields. This method is very robust 
to geometry since it does not rely on a resonance 
phenomenon. The first experimental realization of a cloaked 
device for a free-standing 3D object was based on this 
principle [23]. We discuss now how plasmonic cloaking 
may be translated to matter waves. For the purpose of clarity 
we will not consider motion in a periodic potential, and 
therefore we consider a quantum particle in vacuum 
impinging on a region with non-zero potential ( )U r


. This is 

equivalent to setting cV  to zero in equation (1). This 

situation corresponds to the usual quantum problem of 
scattering by a potential. We make the usual assumptions 
that the impinging particles are spinless and structureless. 
The potential is not necessarily central, but it is negligible 
outside a certain action zone  . 
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4.2. Cloaking condition 

Let’s start from the Lippmann-Schwinger equation in the 
position representation: the solution of the Schrödinger 
equation satisfies the following integral equation [24]: 

 3( ) ' ( ') ( ) ( )ikzr e d r G r r u r r   
      , (15) 

where 
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Equation (14) can be solved by iteration, but if the potential 
( )u r


is small enough one can keep only the first term, 

following Born approximation 
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where s iK k k 
 

is the difference between the scattered 

wave vector in the direction 'r


and the incident wave vector. 
Imagine now to be able to add a potential cover ( )cu r


 

around the action zone of the potential. Let’s denote by c  

the finite domain where the potential cover is non-zero. 
Equation (15) becomes: 
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Cloaking is achieved when the integral over the cover 
cancels the one over the initial potential: 

 3 . ' 3 . '' ( ') ' ( ')
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For instance, for constant potentials and in the quasistatic 
limit, one has the simple condition: 
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For spherical constant potentials, if  denotes the ratio 

between the shell and the core radii, the cloaking condition 
becomes 
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The analogies with the case of plasmonic cloaking for 
electromagnetic or acoustic waves are evident. The 
multipole expansion is replaced by the Born expansion, and 
the dipole approximation by the Born approximation. Like 
in the electromagnetic case, the cover needs to have opposite 
local polarizability to cancel dipolar scattering. Alone, the 

cover or the core would scatter, but when combined and 
interfering with each other, they cancel each other, making 
the obstacle totally transparent to the impinging wave. The 
cloaking condition is robust to geometry imperfections or 
fluctuations in the potentials, since it does not rely on a 
resonance phenomenon. The associated low observability of 
the cloaked object may find potential application in 
electronics, sensing, and imaging. 

5. Transmission-line theory of guided matter wave 

Given the strong analogy between type II QMM and 
conventional electromagnetic or acoustic metamaterials, we 
strongly suspect that type-II QMM may be associated with 
similar anomalous tunneling phenomena as for classical 
metamaterials. These phenomena are well described by 
transmission-line (TL) theory. In this section, we first 
illustrate the need for a TL theory of matter waves. We 
show that TL theory is the most suitable tool to understand 
the extraordinary tunneling phenomena associated with 
electromagnetic metamaterials, through the examples of 
ENZ supercoupling and tunneling at the plasmonic 
Brewster angle. Then, we develop a transmission line 
theory for guided matter waves which may be directly 
applied to transpose those concepts into the quantum world, 
paving the way to a variety of exciting applications. 

5.1. ENZ supercoupling 

ENZ supercoupling is a peculiar transmission phenomenon 
which occurs between two waveguides of very different 
cross-sectional areas. Consider an infinite parallel-plate 
waveguide directly connected to another infinite waveguide 
with much smaller cross section. Intuitively, one would 
expect almost total reflection of the TEM waves at the 
junction between the two waveguides, because of the huge 
impedance mismatch introduced by the difference in cross-
sections. From TL analysis, however, we find the condition 
for having zero reflection as [6] 

 1 2

1 2

h h

 
 , (23) 

where h denotes the waveguide height and   is the 
effective permittivity of the medium filling each waveguide. 
We have assumed that the permeability in the two 
waveguide is the same. If 2 1h h  and the permittivities are 

of the same order of magnitude, condition (22) is far from 
being fulfilled. But interestingly, if 2  is near zero, total 

transmission is paradoxically achieved for a waveguide of 
infinitely small 2h  [5]. The associated large field 

enhancement, uniform all along the small waveguide due to 
the ENZ quasistatic response, is peculiarly independent of 
its length and shape and has been proposed for novel 
concepts in light concentration and harvesting [25], sensing 
[26], boosting molecular emission [9] or optical non-
linearity [27]. 



6 
 

5.2. Plasmonic Brewster angle 

Tunneling of electromagnetic waves at the plasmonic 
Brewster angle is another example of anomalous tunneling 
through a very small aperture. Like ENZ tunneling, it relies 
on impedance matching. Therefore, this phenomenon is best 
described by transmission line formalism. Consider a 
metallic screen corrugated by very narrow slits. It has been 
shown [28] that the impedance mismatch with a normally 
incident plane wave can be totally compensated if the angle 
of incidence satisfies the following matching condition: 

 

0

cos( ) sw

k d

  , (24) 

where s is the wave number inside the screen, w is the 

width of the slits, 0k is the free space wave number and d  

is the periodicity of the grating. This phenomenon is of 
particular interest since the associated ultrabroadband 
tunneling can span from dc to the visible range for a fixed 
incidence angle. 

5.3. TL theory of guided matter waves 

TL theory for matter waves has been proposed to describe 
propagation of plane waves in one dimensional problems 
[29]. We propose to extend it to the description of guided 
matter waves, in order to enable easy transposition of the 
two above mentioned extraordinary tunneling. Imagine a 
rectangular matter waveguide made out of infinite potential 
walls filled up with a type-II QMM with effective 
parameters *m  and V . The solution of the time-
independent Schrödinger equation for the envelope function 
can be written as 

 
0( , , ) sin sin zik zn x m y

x y z e
a b

          
   

 (25) 

where a and b are the rectangular cross-section dimensions 
in the x and y directions, 0  is a constant, and ( , )n m  is a 

pair of nonzero integers. We will restrict ourselves to the 
(1,1) mode, for which the guided wave number zk  satisfies 

the dispersion relation 
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2
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m
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. (26) 

We propose the following TL model for the wave 
propagation along z. The line voltage ( )u z  is defined as 

 
0( ) ( , , )

2 2
zik za a

u z z e    (27) 

and the line current as 
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
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The primary parameters of the line are the shunt line 
admittance pY  and the series line impedance sZ , given by 
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The line impedance is therefore: 

 
*

s z

p

Z m k
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Y ab
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Note that this definition of voltage and current has been 
chosen to ensure the continuity of the probability and 
probability current along the line. With these definitions, 
the junction between two waveguides with different cross-
section can be directly modeled by connecting the two TL 
models together. The condition for total transmission 
between two semi-infinite waveguides is obtained by 
equating the line impedances: 

 
* *

1 1 2 2

1 1 2 2

z zm k m k

a b a b
  (32) 

It is evident how this theory can be exploited to transpose 
epsilon-near-zero supercoupling to matter waves, with 
similar properties as described in Section 5.1. Moreover, 
this theory is obviously valid for plane waves in unbounded 
media (or particles with well-defined momentum), written 
in the form: 

 
0( , , ) zik zx y z e   (33) 

An angle of incidence can be taken into account by 
appropriately inserting factors cos i  in the definitions of 

the line voltage and current in order to ensure the continuity 
of the probability and probability current at the junctions 
between unbounded media and waveguides. This 
modification allows a translation of the plasmonic Brewster 
tunneling to matter waves, which we will explore in detail 
in an upcoming publication.  

6. Conclusions 

We have presented and theoretically explored exotic 
properties and applications of quantum metamaterials. Type 
I quantum metamaterials, which are constituted of a 
quantum system strongly coupled to a classical 
metamaterial, were illustrated by considering the 
spontaneous radiation properties of a system of identical 
quantum emitters in a near-zero permittivity medium. We 
have presented quantitative arguments to support the fact 
that super-radiance may be strongly enhanced in an epsilon-
near-zero background. Type II quantum metamaterials are 
artificial media with exotic effective properties for matter 
waves. We have shown how such media can be constructed 
by tailoring the band structure of quantum particles in 
periodic potentials. Exotic properties of matter wave 
metamaterials have been illustrated through several 
promising examples. We have shown that in principle it is 
possible to achieve plasmonic cloaking for matter waves, by 
designing a cover to cancel the scattering from a region of 
non-zero potential. In addition, we have shown that the 
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applications of classical metamaterials may be successfully 
translated into the quantum arena. A transmission-line 
theory for matter waves has been presented and we have 
showed how this tool may be successfully applied to 
transpose ENZ supercoupling and plasmonic Brewster 
angle tunneling to the quantum wave functions. These 
phenomena may be of interest in a variety of applications 
including sensing, electronics, or imaging. 
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