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Abstract 

We present a theoretical work which shows that for a 

metamaterial consisting of a periodic array of doped and 

undoped semiconductors it is possible to define a frequency 

t corresponding to a pseudo volume-plasmon. t depends 

on the thicknesses and on the dielectric constants of the 

components of the metamaterial and on the plasma 

frequency of the doped semiconductor. As its homologue in 

noble metal, the pseudo volume-plasmon is the collective 

oscillation of charges present in the metallic part of the 

metamaterial leading to a pure longitudinal electric wave. 

We show that t is the degeneracy frequency between the 

anti-symmetric mode in transverse magnetic field (TM) and 

the mode in transverse electric field (TE). We demonstrate 

that this degeneracy is due to the periodicity of the structure 

which transforms the imaginary solution of a metal-

dielectric interface into a real solution in the case of the 

periodic metamaterial. 

1. Introduction 

Recent developments of plasmonics have opened new 

prospects to control light-matter interactions [1,2]. Surface 

plasmon polaritons (SPP) result from the coupling between 

an electromagnetic wave and the collective oscillation of 

the electrons supported by the metal/dielectric interface. 

They exhibit unique physical properties due to enhanced 

nanolocalized optical fields. In the past decade, several 

breakthroughs have been made to improve the control of the 

wave propagation via wave-guides [3], plasmonic crystals 

[4,5] or the so-called extraordinary optical transmission 

(EOT) [6]. More recently, new applications have been 

proposed which are based on the exaltation of the 

electromagnetic field near metallic surfaces. They allow to 

enhance natural optical properties of materials [7] or to 

generate nonlinear effects by breaking symmetries [8,9] and 

induce a control of the optical processes at the femto-second 

scale [10,11]. 

 

The existence of the SPP, and their unique optical 

properties, is possible because of the presence of the 

volume plasmon with its characteristic frequency, p. 

Volume plasmon is a quantum of the oscillating plasma and 

a pure longitudinal electric wave propagating into the metal. 

This particular wave can be excited uniquely by electrons, 

because of its longitudinal nature, by coupling between the 

electric charge of the electron and the fluctuations of the 

electrostatic field of the plasma wave. It is necessary to use 

energy electron loss spectroscopy (EELS) to characterize 

volume plasmon [12-14]. An indirect signature can be 

obtained in optical reflectance spectra because the dielectric 

function equals 0 for  = p. But generally this method is 

limited to doped semiconductors [15] because p is in the 

deep UV range and is masked by the inter-band absorption 

for noble metal. Controlling the plasma frequency is 

fundamental for engineering the optical properties of new 

photonic devices. It is possible to adjust the volume 

plasmon frequency in the microwave range notably by 

using thin-wire structures [16-18]. However, realizing 

three-dimensional (3D) structure for IR applications is 

difficult because of technological limitations. It is, however, 

possible to investigate simpler one or two dimensional 

structures to control the plasma frequency p. 

 

In the case of one dimensional structures such as grids of 

parallel metallic wires, theoretical works have been done to 

explain in detail their optical properties [19,20]. They 

consider structures with a period d larger than l, the aperture 

of the grating, and much larger than the plasma wavelength 

p. In other words, p << l < d. They have shown that their 

main optical property, the EOT, is due to the coupling of the 

incident plane wave with cavity resonances located inside 

the slits, leading to localized SPP, or to the excitation of 

coupled surface electromagnetic modes on both surfaces of 

the grid, resulting in coupled SPP (see ref. 21 for more 

detail).  

 

Theoretical studies dealing with comparable p, l, and d, 

have been performed on infinite or truncated super-lattices 

of metal/dielectric or semiconductor/semiconductor [22-25]. 

They showed in the case of truncated super-lattices that 

bulk and surface plasmon should exist because of 

periodicity. The term bulk and surface plasmon are used to 

describe the coupling through the structure of surface 

plasmon pinned at each interface and surface plasmon 

pinned at the truncated surface, respectively. Such works, 

however, did not investigate the impact of the carrier 
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density modification given by the fraction of space 

occupied by the metal. 

 

Recently, this theoretical approach has been simplified and 

an analytic model has been proposed to treat periodic arrays 

of doped and un-doped semiconductors in the long 

wavelength limit to exploit the polaritonic behaviour of the 

SPP [26]. The main difference between Ref. 26 and 

previous works on periodic slit arrays is that Ref. 26 

considers the case where d << p. This implies fundamental 

differences: it is no more possible to consider the metal as a 

perfect conductor and the zero order transmission or 

reflection is at higher frequency than the plasma frequency. 

So the optical properties of doped and un-doped 

semiconductor arrays are essentially governed by SPP 

located inside the un-doped semiconductor part. One of the 

main results of this analytic model was to demonstrate the 

existence of a huge photonic band gap which opens the 

possibility to realize optical filtering in the IR and THz 

ranges. Similar structures based on metal and dielectric 

waveguides have been first studied in 1969 [27]. Three 

branches appeared in the dispersion relation, two of them 

corresponding to the symmetric modes and one to the anti-

symmetric mode. Several other works have completed the 

theoretical study of SPP wave-guides [28-29]. However, the 

quasi-bi-dimensional shape of wave-guides makes them 

difficult to manipulate in free space optic. Periodic arrays in 

contrast allow avoiding this problem and give access to new 

optical properties like negative refractive index [30-34] or 

high index of refraction [35] and particularly in the case of 

using highly doped semiconductors. Indeed, it is possible to 

adjust the plasma frequency, p, that give an additional 

degree of freedom to control the permittivity, , from the IR 

to the THz range [36,37]. 

 

In this work, we propose a theoretical work on pseudo 

volume-plasmons which can be observed in periodic arrays 

of doped and un-doped semiconductor. We first describe the 

theoretical framework and highlight the analogy between a 

SPP and an ionic crystal (Sec. II). We then generalize this 

approach to periodic structures before defining the concept 

of pseudo volume-plasmon and studying its properties (Sec. 

III). Finally, we propose a scheme of the pseudo volume-

plasmon (Sec. IV) and discuss the physical meaning of the 

pseudo volume-plasmon frequency in light of the ionic-

crystal analogy (Sec. V). 

2. Surface Plasmon Polaritons modeled as an 

ionic-crystal 

2.1. SPP at the metal/dielectric interface 

We consider the interface between two semi-infinite 

materials as depicted in Fig. 1. For simplicity, we normalize 

all frequencies to the plasma frequency p, the wave 

numbers to kp = p /c, the lengths (including spatial 

variables) to kp
−1

, and time to p
−1

. 

 

The index of the structure is defined as: 

 𝑛2(𝑧, 𝜔) = {
𝜀𝑏  𝑓𝑜𝑟  𝑧 > 0

𝜀′ = 𝜀𝑎 [1 −
1

𝜔(𝜔+𝑖𝛾)
]  𝑓𝑜𝑟  𝑧 < 0

},  (1) 

where a Drude dielectric function is used to model the 

behaviour of the doped semiconductor.  

 
Figure 1: Scheme of the structure corresponding to an 

interface (x axis) between two materials which are 

assumed to be semi-infinite in the z direction and infinite 

in the y direction. The indexes of the doped and un-doped 

semiconductors are respectively 𝑛𝑎 = √𝜀′  and 𝑛𝑏 =

√𝜀𝑏 . The SPP propagates along the x direction. 

 

We consider that the TM field exciting the surface wave that 

propagates along the interface takes the form: 

 𝐸⃗ (𝑥, 𝑧, 𝑡) = (
𝐸(𝑧)
0

𝐹(𝑧)
) 𝑒𝑖(𝜔𝑡−𝑞𝑥).    (2) 

We study the dependence with the z variable. Computing 

𝛻 × 𝛻 × 𝐸⃗ (𝑥, 𝑧, 𝑡)  in the Maxwell equation 𝛻 × 𝛻 × 𝐸⃗ +
(𝑛2 𝑐2⁄ )𝜕𝑡

2𝐸 = 0 , and eliminating 𝜕𝑧𝐹(𝑧) , we obtain the 

usual Helmotz equation for E(z), and an explicit expression 

for F(z): 

𝜕2𝐸

𝜕𝑧2 + [𝑛2(𝑧, 𝜔)𝜔2 − 𝑞2]𝐸 = 0,    (3) 

[𝑛2(𝑧, 𝜔)𝜔2 − 𝑞2]𝐹 = −𝑖𝑞
𝜕𝐸

𝜕𝑧
.    (4) 

Considering the boundary conditions at the interface, that is 

the continuities of the field components E//, B, the 

discontinuities of the field components E, B// and the Gauss 

theorem for z < 0, (𝛻 (𝜀′𝐸𝑎
⃗⃗ ⃗⃗ (𝑥, 𝑧, 𝑡)) = 0) and for z > 0, 

( 𝛻(𝜀𝑏𝐸𝑏
⃗⃗⃗⃗ (𝑥, 𝑧, 𝑡)) = 0 ) allow collecting 6 equations. 

Manipulating these equations allows obtaining the well-

known equation: 

  
𝜀𝑏

𝑘𝑏
−

𝜀′

𝑘𝑎
= 0,      (5) 

where ka and kb are respectively the wavenumbers for z < 0 

and z > 0 and are given by: 

𝑘𝑎
2 = 𝜀𝑎(𝜔

2 − 1) − 𝑞2,     (6) 
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𝑘𝑏
2 = 𝜀𝑏𝜔

2 − 𝑞2.      (7) 

For more detail the reader should refer to [1]. Injecting Eq. 

(6) and (7) in (5) gives: 

𝑞2 =
𝜀𝑎𝜀𝑏

𝜀𝑎+𝜀𝑏

𝜔2−1

𝜔2−𝜔𝑠
2 𝜔2,     (8)  

where 𝜔𝑠
2 =

𝜀𝑎

𝜀𝑏+𝜀𝑎
.     (9) 

Eq. (8) and (9) are respectively the dispersion relation (q) 

and the expression of the SPP frequency at the 

metal/dielectric interface. 

2.2. Analogy between SPP and ionic crystal 

Let us compare the dispersion relation (q) in Eq. (8) to the 

one found in ionic crystals. Ashcroft & Mermin [38] define 

it in chapter 27 formulae (27.57) and (27.67): 

𝜀(𝜔) = 𝜀∞ +
𝜀∞−𝜀0

(𝜔2 𝜔𝑇
2⁄ )−1

 ,     (10) 

 𝜔𝐿
2 =

𝜀0

𝜀∞
𝜔𝑇

2  ,      (11) 

where 0 and ∞ are the dielectric constants at low and high 

frequencies and the subscripts L and T are meant for 

Longitudinal and Transverse. Eq. (11) is the so-called 

Lyddane-Sachs-Teller relation. Combining these two 

relations gives 

𝜀(𝜔) = 𝜀∞
𝜔2−𝜔𝐿

2

𝜔2−𝜔𝑇
2  .    (12) 

Taking into account 𝜔2 = 𝑐2 𝑞2 𝜀⁄ (𝜔), we obtain: 

𝑞2 = 𝜖0𝜇0𝜔
2𝜀∞

𝜔2−𝜔𝐿
2

𝜔2−𝜔𝑇
2  ,    (13) 

where 𝜖0 and µ0 are the permittivity and permeability of the 

vacuum.  

 

Now Eq. (13) is exactly the expression of the dispersion 

relation given above in Eq. (8) provided that: 

𝜀∞ =
𝜀𝑎𝜀𝑏

𝜀𝑎+𝜀𝑏
 ,     (14) 

 𝜔𝐿 = 𝜔𝑝 ,     (15) 

𝜔𝑇 = 𝜔𝑠 .       (16) 

The dielectric constant at high frequencies of the composite 

material considered in the ionic-crystal model is an average 

between these of the metal and of the dielectric. If both 

dielectric constants are equal we obtain the well-known 

value of the SPP frequency in the case of an interface 

between a noble metal and the air, 𝜔𝑝 √2⁄ . The longitudinal 

frequency, associated to the zero of the dielectric function 

(Eq. (13)), corresponds to the plasma frequency which is of 

course a pure longitudinal electric wave. The transverse 

frequency, associated to a pole of the dielectric function (Eq. 

(13)), corresponds to the SPP frequency. In fact, this is the 

oscillator frequency (or the two level system) necessary to 

develop the crystal-ionic model. Thus, we can view the SPP 

as an oscillator pined at the interface between the metal and 

the dielectric. Finally, considering the Layddane-Sachs-

Teller relation, we can define the dielectric constant at low 

frequencies  

0 = b ,      (17) 

As expected for an ionic crystal, ∞ is smaller than 0. In 

addition, 0 is simply due to the contribution of the 

dielectric material. This stems from the fact that the 

electromagnetic wave does not penetrate the metallic part 

which can be considered as a perfect conductor at low 

frequencies. 

2.3. The SPP dispersion relation (q) 

Let us consider the dispersion relation eq. (8) which is valid 

for both real and imaginary solutions of the wave-vector q. 

As an example we show in Figure 2 the solutions obtained 

when both a and b dielectric constants are taken equal to 

11.7 (which is the value of InAs). The real and imaginary 

solutions are the black and the red-dashed lines, 

respectively. The SPP frequency is noted s. In the low 

frequency range (lower than s), we can recognize the 

dispersion relation law of the SPP which corresponds to the 

bound mode at the interface. Frequencies higher than 1 

correspond to the radiative regime into the metal. At these 

frequencies, the metal is transparent. When the normalized 

frequency lies between s and 1, we obtain a photonic band 

gap, a range of frequencies where the wavenumber is purely 

imaginary. No mode is sustained at the interface. The inset 

in figure 2 shows the x and z components of the electric 

field through the interface. Note that the electric field of the 

unique SPP mode is pined at the interface (Ex component). 

This is the only possible mode at the interface. 

 

Figure 2: Dispersion relation of SPP at the interface 

between a doped semiconductor and an un-doped 

semiconductor. The dielectric constants are equal to 11.7. 

The dark lines and the red dashed line correspond 

respectively to the real and the imaginary solutions of eq. 

(8).  The SPP frequency is noted s. Inset shows the z and 

x components of the electric field along the z axe of the 

SPP. 

We will see in the following that this mode can be compared 

to the symmetric mode of wave-guide [27] or of periodic 

structures [26,32] whereas the imaginary solution should be 
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compare to the anti-symmetric one. Indeed, for these cases 

several modes can be sustained. We develop this point in the 

next section. 

3. The periodic array of doped and un-doped 

semiconductors 

We now extend the point of view of the ionic-crystal model 

to periodic arrays. Let us recall the main results of ref. 26 

obtained in the long wavelength limit approximation. 

Indeed, the main difference between this approach and 

previous ones [19-21] is the fact that p is larger than the 

grating period (a + b). This implies, first, the selection of 

vertical SPP into the un-doped semiconductor and, second, 

the possibility to obtain SPP modes nears the plasma 

frequency. 

 

Consider the metamaterial composed of a periodic array of 

doped and un-doped semiconductors (Fig. 3-a and c). When 

light is under normal incidence, this metamaterial may be 

considered as ionic-crystal in TM field and as a metal in TE 

field (Fig. 3-b and d). To reach these results it is necessary to 

consider the dielectric function and the thickness of the 

doped (' and a) and un-doped (b and b) semiconductors as 

follows: 

𝑛2(𝑧, 𝜔) = {
𝜀𝑏  𝑓𝑜𝑟  𝑧 ∈ [−𝑏, 0]

𝜀′ = 𝜀𝑎 [1 −
1

𝜔(𝜔+𝑖𝛾)
]   𝑓𝑜𝑟  𝑧 ∈ [0, 𝑎]

} . (18) 

The doped semiconductor follows a Drude model whereas in 

the case of the un-doped one we consider its dielectric 

constant. Afterwards, it is necessary to solve the Maxwell 

equations in each region and consider the boundary 

conditions in both interfaces. Several mathematical 

manipulations are necessary to obtain the dispersion relation 

in both cases 

 𝑞2 = 𝜀𝑒𝑓𝑓𝜔
2 ,     (19) 

where q is the wavenumber and eff the effective dielectric 

function. 

 

 
Figure 3: Schemes of the simplification obtained by the 

model of ref. 26. The periodic arrays of doped and un-

doped semiconductors can be view as ionic-crystal under 

TM filed radiation, a) and b), or as a metal under TE field 

radiation, c) and d). Materials a and b stand for metal and 

dielectric, respectively. 

 

Note that the term effective dielectric function, eff, is very 

restrictive because it is valid for normal incidence or close to 

the normal incidence. eff is well defined essentially along 

the x direction and is strongly polarization depend. Indeed, 

in TM field, eff follows the ionic-crystal model with 

characteristic dielectric constant TM and frequency r. TM 

and r correspond respectively to the average dielectric 

constant and to the frequency associated to the oscillators 

pined at the interface: 

𝜀𝑒𝑓𝑓 = 𝜀𝑇𝑀
𝜔(𝜔+𝑖𝛾)−1

𝜔(𝜔+𝑖𝛾)−𝜔𝑟
2 ,    (20) 

where 𝜀𝑇𝑀 =
(𝑎+𝑏)𝜀𝑎𝜀𝑏

𝑎𝜀𝑏+𝑏𝜀𝑎
 ,    (21) 

and 𝜔𝑟
2 =

𝑏𝜀𝑎

𝑎𝜀𝑏+𝑏𝜀𝑎
 .    (22) 

The associated modes are symmetric. It is important to note 

that an anti-symmetric mode exists with the following 

dispersion relation law: 

 𝜔(𝑞) =  𝜔𝑡 ,     (23) 

with 

 𝜔𝑡
2 =

𝑎𝜀𝑎

𝑎𝜀𝑎+𝑏𝜀𝑏
 .     (24) 

The frequency of this anti-symmetric mode is thus 

independent on q and this mode is not coupled to normal 

incident light.  

 

At this stage, it is possible to compare the previous 

expressions with those obtained for the ionic crystal model. 

As in the case of the SPP at one interface TM, p, r are 

respectively the high frequency dielectric constant, the 

plasma and oscillator frequencies. It is also possible to 

define by the way of eq. (11) the static dielectric constant  

𝜀0 =
𝑎+𝑏

𝑏
𝜀𝑏.      (25) 

As expected, ∞ is smaller than 0 but contrarily to the SPP 

at an interface, 0 depends on the proportion of the dielectric 

material in the metamaterial. This is coherent with the fact 

that 0 is due to the contribution of the dielectric material.

 

In TE field, eff follows a Drude model with characteristic 

dielectric constant, TE, and frequency, t. TE and t 

correspond respectively to the average dielectric constant 

and to the frequency associated to the collective oscillation 

of the free carrier, that is the plasma frequency or the pseudo 

volume-plasmon for this metamaterial. Note that t 

naturally appears in the analytic model. 

𝜀𝑒𝑓𝑓 = 𝜀𝑇𝐸 (1 −
𝜔𝑡

2

𝜔(𝜔+𝑖𝛾)
),    (26)  

with 𝜀𝑇𝐸 =
(𝑎𝜀𝑎+𝑏𝜀𝑏)

𝑎+𝑏
 .      (27) 

Of course, these results are valid when a and b are smaller 

than kp
-1

/2 (see ref. 39 for more details). Indeed for larger 

thickness, guided modes appear invalidating our main 

approximation: the long wavelength limit. t can be also 

view as the cut off frequency of the waveguide. 

a
b
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E

E
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k
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4. The pseudo volume-plasmon 

The main approximation of the analytic model is to consider 

that we can linearize the tangent function present in the 

solutions obtained by resolving the Maxwell equations in 

TM field, respectively for the symmetric (28) and anti-

symmetric (29) modes:  

𝜀𝑏𝑘𝑎tan(𝑎 𝑘𝑎 2⁄ ) + 𝜀𝑎𝑘𝑏 (1 −
1

𝜔(𝜔+𝑖𝛾)
) tan(𝑏 𝑘𝑏 2⁄ ) = 0, 

   (28) 

𝜀𝑎𝑘𝑏 (1 −
1

𝜔(𝜔+𝑖𝛾)
) tan(𝑎 𝑘𝑎 2⁄ ) + 𝜀𝑏𝑘𝑎tan(𝑏 𝑘𝑏 2⁄ ) = 0. 

   (29) 

Figure 4 shows the dispersion relation of the optical modes 

propagating into the metamaterial using the analytic model 

(open circles) or numerical model (lines or dashed-line eq. 

28 and 29). The black and red lines or symbols correspond 

respectively to the symmetric and the anti-symmetric modes 

in TM field. The dashed blue line corresponds to the 

fundamental mode in TE field. As we can see, the analytic 

model and the numerical one are in very good agreement for 

q < 3.5 kp
-1

. This upper limit of q depends directly on the 

dielectric constant of the constitutive materials of the 

metamaterial. 

 
Figure 4: Dispersion relation of SPP into an array of 

doped and un-doped semiconductors. The dielectric 

constants are equal to 11.7 and the ratio a/b = 10. The 

open circle curves correspond to the analytic model. 

Lines and dashed lines correspond to the numeric model. 

The dark, red and blue colors correspond respectively to 

symmetric, anti-symmetric modes in TM filed and the 

fundamental mode in TE field. The SPP frequency for a 

single interface is noted s, and t and r are respectively 

frequencies of the pseudo volume-plasmon and SPP of 

the analytic model. 

 

We can see that t corresponds exactly to the cut-off 

frequency for an incident electromagnetic wave in TE field 

polarization. But in contrast to a waveguide with perfect 

electric conductor, the cut-off frequency does not depend 

only on the dielectric constant and on the size of the 

waveguide, but also on the dielectric constant and on the 

size of the doped semiconductor (the metal here). This new 

dependence is mainly due to the fact that the 

electromagnetic wave penetrates in the metallic part. Indeed, 

the proximity of the plasma frequency implies a weak 

permittivity.  

 

By analogy with the case of a metal, t can be interpreted as 

the plasma or volume plasmon frequency for the 

metamaterial under investigation. Thus, we define this 

frequency as the pseudo volume-plasmon frequency, where 

we use pseudo to differentiate from the rigorous definition 

of the volume plasmon. This approach allows understanding 

how modifying the size of both materials modifies t. 

Decreasing the metal thickness decreases the number of 

charges and thus t, and vice-versa. At frequencies lower 

than t, the electromagnetic waves in TE field cannot 

propagate because the dielectric function is negative. The 

metal is a perfect mirror. At frequency higher than t, the 

metal becomes transparent. The electromagnetic waves 

propagate. 

 

Figure 5 shows a scheme of the pseudo volume-plasmon 

into the metamaterial. The electric field lines are represented 

by the black arrows and the charge density is represented by 

the plus or minus charges for ions and electrons, 

respectively. This is a longitudinal electric wave with a 

wavelength t. 

 

 
Figure 5: Scheme of the collective oscillation of 

charges (positive in blue, negative in red) into the 

metamaterial associated to the pseudo volume-

plasmon frequency t and wavelength t. This is a 

longitudinal wave which is purely electric. The electric 

field is represented by the black arrows. a, b and d are 

respectively the thickness of the doped, un-doped 

semiconductor and the period. 

 

5. Properties of the pseudo volume-plasmon 

We will analyse here the behaviour of the pseudo volume-

plasmon, particularly near t for q =0. 

 

Figure 4 shows that at q = 0 there is no degeneracy of the 

high frequency branches in TE and TM fields ( > t). This 

is not the expected behaviour of a metal.  
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Figure 6: a), b) and c) are respectively schemes of the pseudo volume-plasmon, the anti-symmetric and symmetric modes. The 

z (red) and x (blue) components of the electric field are depicted. d) Dispersion relations of SPP for the structure shown in fig. 

4 obtained with eq. (28)-(29). The dark and red curves correspond respectively to symmetric and anti-symmetric modes in TM 

filed. The SPP frequency is noted s, and t is the frequency of the pseudo volume-plasmon. 

 

Indeed, if the metamaterial were equivalent to a metal for 

both polarisations then the lowest frequency of the high 

frequency mode of the TM field should be resonant with t, 

the pseudo volume-plasmon frequency.  

 

In contrast to this intuition, the lower frequency of the TM 

branch is p whereas the cut off frequency of the TE branch 

is t. In fact, in TE polarization the electromagnetic wave is 

sensitive to the total carrier concentration into the 

metamaterial. Thus, the cut-off frequency follows the 

behaviour of t which depends mainly of the geometry of 

the metamaterial. In revenge, in TM polarization the low 

frequency limit of the second symmetric mode depends 

exclusively on what happens at the metal/dielectric 

interface. The associated frequency, thus, depends 

exclusively on the plasma frequency, p, of the metallic part 

of the metamaterial. 

 

In contrast, fig. 4 reveals unambiguously that the anti-

symmetric mode in TM field and the TE mode are 

degenerated at q = 0. This degeneracy does not depend on 

the structure except when a and b > 0.5 kp
-1

 which 

correspond to the limit of validity of the analytic model [39]. 

This puzzling behaviour can be explained as follows. Let us 

first remind the results of the Fig. 2 where we modelled the 

SPP by an ionic crystal approach. We obtained two solutions 

for the TM polarisation, one corresponding to the 

propagative wave with a real wave-vector q and the second 

corresponding to the non-propagative wave with a purely 

imaginary wave-vector q. This second solution mode 

frequency decreases continuously with q from the plasma 

frequency p to the surface plasmon frequency s. There is a 

photonic band gap in this frequencies range. In TE 

polarisation, there is no propagation for  < p whereas 

propagative waves following the dispersion relation law is 

possible for p < . It is important to notice that the upper 

value of the imaginary branch in TM field is equal to the 

lower value of the real branch in TE field, that is p, for q = 

0. Now, there is an analogy between the ionic crystal and the 

doped/undoped semiconductor periodic array. In the case of 

the periodic structures (Fig. 6-d), the plasma frequency p is 

replaced by the pseudo volume-plasmon, t, depicted in the 

Fig. 6-a. In TE field, the propagative waves are allowed for 

 < t. In TM field, we obtain two propagative modes for  

< t, one symmetric and the other one anti-symmetric. But 

in contrast to the two dimensional case with SPP, the 

imaginary branch is real which means that both modes 

propagate. If we compare the dispersion relations of the 

metal/dielectric interface (Fig. 2) and of the metamaterial at 

high q (Fig. 6-b) we obtain the same behaviour. The upper 

and lower limit frequencies for the imaginary mode in TM 

field and the anti-symmetric mode in TM field are identical, 

p or t and s, respectively. So the anti-symmetric mode of 

the metamaterial corresponds to the imaginary mode in TM 

field. 

 

The question is whether this situation is physically sound. In 

fact, it is the periodicity of the structure that transforms the 

imaginary solution into a real one. Indeed, an anti-

symmetric mode has no meaning at a metal/dielectric 

interface. Only a symmetric mode can exist (Fig. 6-c). In 

revenge, anti-symmetric mode is possible in periodic 

structures because of the possibility to pin the electric field 

at the interfaces and to extinguish the electric field into the 

dielectric or metallic part of the metamaterial (Fig. 6-b). 

When the frequency of this anti-symmetric mode reaches t 
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its longitudinal component become dominant leading to a 

mode which is not coupled to incident light. This is the 

definition of the pseudo volume-plasmon. 

 

At this stage, it is interesting to evaluate how modifying the 

properties of the metamaterial (a, b, na and nb) impacts t the 

pseudo volume-plasmon. The general expression of the 

volume plasmon when positive charges are immersed in a 

material with a dielectric constant  is: 

𝜔𝑝 = √
𝑛𝑒2

𝑚𝜀𝜀0
 ,     (30) 

where n and m are respectively the charge density and the 

electron effective mass. To modify p, one can play with n, 

m or . As an example, consider dividing the charge density 

by a factor 2. Eq. (30) shows that p will be divided by √2. 

Now, consider a periodic structure with a = b, and a = b. 

Eq. (24) leads to 𝜔𝑡 =
1

√2
 which means that 𝜔𝑡  is also 

divided by √2. This is a confirmation of the same behaviour 

for both equations. 

 

These results show that one can easily control t just by 

modifying the geometrical properties of the metamaterial or 

by changing the individual materials constituting the 

periodic array, i.e. changing the dielectric constants. This is 

a very important asset of our system. In the case of metals, it 

is very difficult to play directly with these parameters to 

reach wavelength in the IR range. One of the main solution 

is to consider a metamaterial composed of metallic nano-

particles (NP) embedded in host material [40]. Indeed, if the 

electromagnetic wave averages the metamaterial, changing 

the size and the density of NP allows playing with the 

electron density. But it is very difficult to control exactly 

what occurs in terms of charge density, dielectric constant 

and homogeneity of the material. In the case of doped 

semiconductors in contrast, one can select the right 

semiconductors and adjust at will their doping level to 

obtain the target m and . Eq. (24) shows that in the general 

case when a, b, a and b can be adjusted, achieving a target 

volume plasmon frequency is trivial whereas it is not so 

simple with metals (Eq. (30)). Our simplified model can be 

used to easily design and fabricate a metamaterial with the 

expected optical properties. Of course, doped 

semiconductors cannot be used in the visible range. 

However, they can be the best choice for IR applications. 

6. Summary and conclusion 

After having presented the analogy between surface plasmon 

polaritons and the ionic-cristal model in the case of a single 

interface and a periodic array of metal/dielectric system, we 

have shown that an analytic model allows defining a pseudo 

volume-plasmon frequency, t, associated to the periodic 

array. By adjusting the physical properties of the structure 

(a, b, na, nb) it is thus possible to define the characteristic 

frequencies r, t and s, and to control their optical 

properties. We have explained the behaviour of t as a 

function of the physical parameters. We have also explained 

why t corresponds to the cut off frequency in TE Field and 

to the high frequency limit of the anti-symmetric mode in 

TM field.  
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